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The effective chiral interaction between molecules arising from long-range quantum interactions between
fluctuating charge moments is analyzed in terms of a simple model of chiral molecules. This model is based on
the approximations thata) the dominant excited states of a molecule form a band whose width is small
compared to the average energy of excitation above the ground statb)dniexial orientational correlation
between adjacent molecules can be neglected. Previous treatments of quantum chiral interactions have been
based on a multipole expansion of the effective interaction energy within second-order perturbation theory. We
consider a system consisting of elongated molecules and, although we invoke the expansion in terms of
coordinates transverse to the long axis of constituent molecules, we treat the longitudinal coordinate exactly.
Such an approximation is plausible for molecules in real liquid crystals. The macroscopic cholesteric wave
vectorQ (Q=2=/P, whereP is the pitch) is obtained viaQ=h/K,, whereK, is the Frank elastic constant
for twist andh is the torque field which we calculate from the effective chiral interactigg, X a;- R,;, where
the unit vectora, specifies the orientation of moleculandR,; is the displacement of moleculerelative to
moleculeJ. We identify two distinct physical limits depending on whether one or both of the interacting
molecules are excited in the virtual state. When both molecules are excited, we regﬁfgﬁtdependence of
ki3 on intermolecular separation found previously by Van der Meeal. [J. Chem. Phys65, 3935(1976].

The two-molecule, unlike the one-molecule term, can be interpreted in terms of a superposition of pairwise
interactions between individual ator(@ local chiral centepson the two molecules. Contributions k9; when

one molecule is excited in the virtual state are of orgr for helical molecules which are assumed not to
have a global dipole moment, but whose atoms possess a dipole moment. It is shown that for a helical molecule
Q can have either the same or the opposite sign as the chiral pitch of an individual molecule, depending on the
details of the anisotropy of the atomic polarizability. The one-molecule mechanism can become important
when the local atomic dipoles become sizable, although biaxial correlafigmsred herg should then be

taken into account. Our results suggest how the architecture of molecular dipole moments might be adjusted to
significantly influence the macroscopic pit¢81063-651X99)12303-1

PACS numbdss): 61.30.Cz, 36.20.Ey, 87.15v

I. INTRODUCTION with

In the cholesteric liquid crystalline phagé,2|, aniso- Q=2#7/P=h/K,. 2
tropic mesogens align on average along a local unit director
n(r) that rotates in a helical fashion about a uniform pitch(Our definition ofQ is such that positiv&) corresponds to
axis. The pitchP of this helix ranges from a few tenths of a right-handed macroscopic chiralifp]). The magnitude of
micron to 10 or more microns. In fact, solutions of the vi- K,, which has units of energy per unit length, is estimated
ruses fd and tobacco mosaic vir(BMV), as well as DNA,  with good accuracy by dimensional analysis. The character-
have even much larger pitch¢8,4]. Because the pitch is istic energy is of the order of the thermal enerdggT
usually large compared to the intermolecular separations-kgTy, wherekg is the Boltzmann constant, is the tem-
these systems are locally essentially indistinguishable fromerature, andy, is the isotropic-to-nematic transition tem-
nematics and consequently they are often referred to as chirgerature. The characteristic length is a molecular lehgto
nematics(CN’s). The pitch wave numbeQ=2#/P can that K,~kgT/L. A similar dimensional analysis for the
even pass through zero as a function of temperdtiy®.  torque fieldh, which has units of energ§éngtit), would
The helical structure of a cholesteric phase must result frompredicth~kgT/L? andP~L. This is a far tighter pitch than
the molecular chirality of some or all of its constituent me-js observed in any cholesteric. This reasoning indicates that
sogens. Achiral mesogens form an achiral nematic rathesn explanation of the magnitude bfrequires considering a
than a chiral nematic phase. Phenomenologically, the explatetailed model of the cholesteric. The chiral structure of cho-
nation of the twist of the cholesteric phase is straightforwardjesterics also raises some technological issues. It would be
chiral mesogens must lead to a chiral teim VX n in the  very desirable to be able to “engineer” molecules that have
long-wavelength free energy density that favors twist. Thisspecific values oh and thusP or more generally that have a
tendency to twist is resisted by a twist elastic energy densitgpecific temperature dependenceliollo realize this goal, it
3K5(n-VXn)?, whereK, is the Frank elastic constant for is necessary to understand how variations in molecular archi-
twist. If the pitch axis coincides with thedirection, then in  tecture and electronic structure influertteAs a first step in

the equilibrium configuration one has dealing with these issues of fundamental and applied science,
this paper will address some aspects of the calculatiom of
n(r)=(cosQzsinQz0), 1 from a molecular model.
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In fact, the calculation ofi is highly nontrivial. It involves  are neglected22,23. However, dispersion contributions to
the rather complex interactions between mesogens and tliee chiral interaction do not require nonzero orientational
orientational correlations they induce. If there are chiral me<correlations between molecules. As discussed in Appendix A
sogens, there are chiral interactions, &rid nonzero; other- and as has been found by several previous autfi@d4,
wise, h is zero. One typically identifies three types of inter- the long-range dispersion interaction survives this indepen-
actions between moleculg$]: (1) long-range attractive dent rotation procedure to produce an effective chiral poten-
dispersion(van der Waalsinteractions,(2) short-range re- tial between effectively uniaxial mesogens of the form
pulsive interactions, whose origin is the Pauli principle, and
(3) direct Coulomb interactions, which take the form of di- Eis(a,a5,Ry)=(aXa; Rk, (3
polar, quadrupolar, etc. interactions between electrically neu-
tral mesogens. The latter interactions are of secondary imwhereR,; is the displacement of the center of molecule
portance in many chiral and achiral liquid crystals and will relative to the center of molecul& and only terms ink,;
be ignored here. Initially Stralely7] proposed that the mac- which are odd in botla, and a; are retained. The effective
roscopic chirality of CN’s could be understood qualitatively interaction of Eq(3) arises between two chiral molecules as
in terms of the packing of screws. These short-range repulwell as between a chiral molecule and an achiral one.
sive forces were modeled as hard-core or steric potentials Our derivation of the effective chiral interaction differs
[8-10,19, reflecting molecular shape, that contribute to thefrom previous one$13,14] in two important respects. First,
entropy but not the internal energy. For spherical atoms, therevious calculations of this interaction are based on a mul-
repulsive and dispersion forces can be combined in a singlgpole expansion in the variablg /R,;, wherer; is the co-
effective potential such as the Lennard-Jones 6—12 centrabrdinate of theth charge of moleculérelative to the center
force potential. More generally, interactions between achirabf moleculel. Strictly speaking, the multipole expansion
molecules can be modeled as sums over central-force effeonly applies wherR,;=R is large compared to any dimen-
tive potentials between pairs of atoms or mass points osion of the molecules. This expansion does not apply to pairs
different moleculeq11]. There are chiral versions of both of molecules whose separation is less than their length but
dispersion and short-range repulsive forces. Chiral dispersiogreater than their width. We develop a modified multipole
forces were first analyzed by Goossgi&] and later more expansion in which coordinates transverse to long molecular
systematically by otherf$,13,14. They found that the domi- axes are treated as small parameters. Second, the results of
nant chiral interaction between chiral mesogens, calculategrevious calculations are expressed in terms of electric di-
in the limit of center-of-mass separatiBhmuch larger than pole and quadrupole matrix elements of the entire molecule.
any molecular dimensioh, was proportional t(R~ " and to  But in a long molecule, typical of those comprising liquid
the product of dipolar and quadrupolar molecular matrix el-crystals, we expect the electronic states to be strongly local-
ements. Various somewhatl hocchiral intermolecular in- ized[24]. Accordingly, it seems more useful to express re-
teractions, some based on implementing models equivalesults in terms of matrix elements within atoms or local com-
to threaded rodg15—18, others on surface-nematic interac- plexes. In so doing, it is natural to assume the relevant
tions of chiral dopant§19], have been introduced mostly as excited state can be reached from the ground state by matrix
input to simulations of chiral systems. Models for flexible elements of the dipole moment operator. Then, the quadru-
mesogens have also been tredt2d|. pole moment operator is easily related to the dipole moment

A chiral molecule is one that cannot be rotated into coin-operator, with the result that the only matrix elements ap-
cidence with its mirror imagé21]. Chiral molecules cannot pearing in the present paper are those of the dipole moment
be uniaxial: at minimum, their description requires an ortho-operator between local atomic states. In common with previ-
normal triad of vectors rather than a single vector. A micro-ous treatments, we will neglect the effects of biaxial corre-
scopic description of chiral interactions involves the com-lations between interacting molecules. Accordingly, we will
plete orthonormal triad of axes emblazoned on each of thevaluatex,; by averaging each molecule independently over
two interacting molecules. However, as we have mentionedspinning about its long axis. In futuf&5] we plan to discuss
apart from very small corrections arising from slow local how the chiral interaction between helical molecules depends
twist, the cholesteric phase is locally uniaxial. It is, therefore,on the angles describing rotation about their longest body
natural to seek effective chiral interactions between effecaxis.
tively uniaxial molecules. If a molecul& of arbitrary shape We may summarize briefly the results of this program.
is spun about some ax&, it becomes on average uniaxial Although we do not expand in powers of the longitudinal
with respect to this axis. Thus, general pair interactions beeoordinates of the charges in each molecule, our results are
tween moleculesandJ in a chiral nematic can be reduced to formally not very different from the previous ongs3,14.
uniaxial pair interactions by averaging over independent roHowever, by expressing the results in terms of matrix ele-
tations of each member of the pair about the local nematienents of localized atomic orbitals, we identify two distinct
director. The resulting potential is only approximate in that itphysical mechanisms. The first is the dipole-quadrupole in-
ignores orientational correlations between molecules in théeraction previously identified. The second is one involving a
plane perpendicular te, and a;. In practice, one usually three-body interaction between two local atomic dipole mo-
averages over independent rotations of each molecule abontents on one molecule and a local anisotropic polarizability
its body axisa, rather than the more correct average overof the second molecule. This second interaction, formally
rotations about the local nematic director. We mention that ipresent in previous work, can dominate the first one in cer-
is known that the chiral part of central-force potentig@ach tain situations. Furthermore, our approach allows us to dis-
as hard-body interactionvanishes when such correlations cuss how these interactions depend on the length of the mol-
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ecule. For a helical molecule we find that the contribution toto describe the nematic phase which would result in the ab-
k5 due to the first mechanism is proportionalt&/R® for ~ sence of chiral interactions.
L<R and toL/R’ for L=R. Results for the three-body in- To make contact with a continuum theory, one introduces
teraction are more complicat¢gee Eq(65)]. In both cases, a local order parameter tensor via
the magnitude of the pitch arising from these interactions in
a concentrated system of helical molecules with polarizabil- Qup(r)=a,(r)ag(r) =384 4
ity corresponding to a dielectric constant of about 1.3 woul .
be 10 um. This is a larger pitch than one observes for most hen thermglly averaged, this tensor becomes the usual de
concentrated cholesterics. It is possible that this discrepam&ennes—Maller.—Saupe prde_r pafam‘ﬁmﬂ- In the long-
is due to some of the simplifying assumptions in our calcu-."’“'e'er.‘gth I|m_|t, the chiral interactioB,, leads to a con-
lations, most probably our disregard of biaxial correlationstiNuum Interaction of the form
between molecule5]. Alternatively, it is possible that the
pitch of most cholesterics is determined by steric rather than Ein= y'f dre,z,Qas(rVQ,s(r), (5
by quantum interactions. Elsewhere we will apply the ap-
proach of the present paper to obtain the quantum contrib
tions toK, [25].

Briefly, this paper is organized as follows. In Sec. Il we

Yhere Greek indices label Cartesian componedyfg,is the
Kronecker delta,e,g, is the antisymmetric tensor, the

) > ) ) repeated-index summation convention is understood, and the
give an overview of thg calqulathn of the torque flelﬂom constanty’ is the macroscopic analog af, . If we express
which the macroscopic chiral pitch can be determined. “b in terms of the directon(r) as

Sec. lll we derive a rather general expression for the strength

of the chiral interactio_n between molecules in terms of ma- <Qa,8>T:S(nanﬁ_%5a,8)v (6)

trix elements of the dipole moment operators of atoms be-

tween the ground state and excited states localized on atomshere( )t indicates a thermal average, then the above chiral
The contribution to this effective chiral interaction from vir- interaction leads to the familiar Frank free energy in the pres-
tual states in which both molecules are excited is treated ience of macroscopic chiral twigbut neglecting splay and
Sec. IV and that in which only one molecule is excited isbend distortionsas[5]

treated in Sec. V. Numerical estimates of the pitch for a
system of helical molecules are given which show that the __ i 2

guantum mechanism when both molecules are excited is un- F_szf drn(r)- Vxn(r)] +hf drn(r)- Vxn(r),
likely to explain the observed pitch of most cholesterics. Our v

results and conclusions are summarized in Sec. VI. .- , _— ,
where, within mean-field theorjn= v’ S°. The main goal of

the present paper is to obtdirfrom a microscopic model. In
Il. OVERVIEW OF CALCULATION particular, we will obtairh from an evaluation ok, in Eq.
) ) ) ) (3). As we have seen in Egél) and(2), a determination of
In this section we give an overview and a summary of the, |eads immediately to the determination of the macroscopic
results of the calculation, given in the next section, of theghiral wave vectoR. In addition, the chiral properties of an

chiral interaction between molecules. Recerl@?]| a sys- isotropic liquid consisting of chiral molecules, such as the
tematic formulation was given that expresses the MaCrOxyary power, are also related 1q; .

scopic pitch of a CN in terms of microscopic interactions  The interaction between molecules we are going to study
between molecules. Such a formulation is required in caseg e generalization, for chiral molecules, of the attractive
where it is either necessary or desirable to include orientayRé term in the van der Waals potential between neutral

tional correlations between 'interact_ing molecules. It WaSpherical atoms. This calculation is based on a quantum me-
shown that for central-force interactions between atoms ORphanical treatment of the total Coulomb interactiby be-

different molecules, a nonzero effectiye chiral inter_action_ be'ﬁween charges on the two interacting moleculesnd J:
tween molecules could only be obtained when orientationa

correlations, specifically biaxial correlations, between mol- ai0;

ecules were taken into account. In contrast, in the present H|J=2 E R—J

paper we will see that the quantum interactions between mol- tel Jed T

ecules are not of this type. Thus, in the present context, it i.\slvherei e | indicates that the sum is over all charggs both

per_missible to use a s_impler and more tradition_al approach_ '"Blectronic and nuclear, in molecul@andR;; is the displace-
which each molecule is characterized by the orientation of its ' !

long axis, specified by the unit vectar We will then evalu- ment ofg; relative tog; . In this calculation we neglect any
9 + SPEC y biaxial correlations between the orientations of the two mol-
ate the chiral interaction energy between moleclilasd J

written in Eq.(3). This interaction energy is evaluated within ecules. Within this assumption it has been shqag] that
-Q.(3). RN gyIs eva . central-force interactiondike those of Eq(8) when taken in
what we will call the “uniaxial” approximation in which we

independently average over the orientations of the two mol]jrst-order perturbation theofycannot lead to any chiral in-

ecules whera is specified for each molecule. In order to teractions. Therefore, we consider the effecttgh within

. . L second-order perturbation theory. The effective interaction
calculate the macroscopic chiral pitch it is only necessary t%etween moleculebandJ is then
0>, €)

®

evaluate the chiral part of this interaction, i.e., the part of the
form written in Eq.(3). This interaction energy can then be o P
added to whatever phenomenological interaction one is using Ey=E(w ,05,Ry;y)= < 0|'H,; EH'J
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average we introduce axes specified by unit veoeapl[sam—
blazoned on théth molecule, as shown in Fig. 1, so that

ri= riI,u,el,;/, . (11)

Previously Van der Meeet al. [13] carried out this averag-
ing within the multipole expansion. However, since we wish
to treat long molecules of the type usually constituting liquid
crystals, we do not make the usual multipole expansion, but
rather expand only in terms of transverse coordinates of the
molecule. Thus we set

€

r=zla+p, 12

FIG. 1. Left: molecule-fixed coordinate system, defined by the o )
unit vectorse, . Right: definition of the Euler angles, 3, andy wherep;-a=0. [ThrOL{QhOUt, atom (j) is aSSUmed to Pe In
which take the space-fixed axes, e,, ande, into the molecule- ~Moleculel (J).] Thusz/ andp; are the coordinates of thiéh
fixed axesg;, €, ande]. Note thate and are the usual spheri- charge of moleculé relative to the center of the molecule,
cal angles which specify the orientation of the long axis of therespectively, longitudinal and transverse to the long axis of
molecule,e,, with respect to the space-fixed axes. The third Eulerthe molecule aligned along=e;,. Now we expancE,; in
angley, not shown here, is the angle of rotation about zhexis  powers ofp and perform the orientational average over pow-
which brings thex andy axes in coincidence with theandy axes  ers of p (indicated by ],,) using, e.g.,
fixed in the body(respectively g, ande)).

[(pi)a(pi’)ﬁ]av:%(Xilxil'+yilyi’/)(5a,ﬁ_aaaﬁ)

where E=Eq—H,, with Eg the energy of the ground state . . L,
|0), H, the unperturbed Hamiltonian describing noninter- + 3 €apy@y (XY —YiXi1)
acting molecules, an® a projection operator that excludes
the ground state. Here we have indicated thgtdepends on
o, (andw;) which denotes the triad of Euler angleee Fig.
1) needed to specify the orientation of tht(Jth) molecule

and onR,; . BothR); andr;, the position of theth charge in  \yhere, and » run over only transversex( y) coordinates
moleculel relative to the center of the molecule, may be 544 (a),. Thereby we find that
v

expressed with respect to coordinate aegs,fixed in space,
as shown in Fig. 2: [Eu]a=(aXay-Ryy)ks(ay,a,Rg)+---. (14

%ri'#r ilrﬂ( Oa,p~ 3adp)

+

1 ! !
2 € iV, €apy@y (13

y=

(10  Here we have written the term responsible for the chiral in-
teraction between moleculésandJ and have discarded the
. i nonchiral termgrepresented by -).
‘We now must average this interaction energy over the rnq eynressions fok,, in its most general form are not
orientations of the twq molecgles, when thellong axes 0(/ery enlightening, although they do display the appropriate
moleculesl and J are fixed to lie along the unit vectos symmetry to vanish for molecules which are not chiral. To

anda,, respectively, and correlations between the orientagain some insight into the meaning of these results we have

tions of the two molecules are neglected. To carry out thigiaq recourse to a model of the excited states, which appear in
second-order perturbation theory. Our first assumption is that
the important excited states consist of dipolar fluctuations
from the ground state. In other words, these states are taken
to be the three atomip states|u;) on atomi. The second
assumption is that, the width in energy of the band of
excited states obtained by allowing these excitations to occur
on any atom, is small compared to their eneEggelative to

the ground state. This assumption allows us to take the vir-
tual intermediate states to be strictly localized to individual
atoms[24]. Nonlocal effects give rise to corrections of rela-
tive order,8/E. Under these assumptions, our results may be
summarized as follows. Contributions &g, can be classified
into two types, depending on whether one or both molecules
in the intermediate state are in an excited state. These are
denoted«(} and «(2), and will be referred to as “one-

FIG. 2. Space-fixed coordinate system, showing the displace[nmecu'e and "two-molecule” terms, respectively. Our re-

mentR, of the Ith molecule and the displacementof the ith  SUlts are conveniently written in terms of the definitief}’
charge of thd molecule relative to the center of the molecule. =3[ «{}+«{P],, where, for any functiori of a, anday,

R,=R,Meﬂ, [i=riu€y-
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[fla=alf(a,a)—f(—a.a)—f(a,—a)+f(—a,~a)].

(15
Then
7<§§’=i€§d M;S; . (16)
where
s;=[a-a—2(a-Dy)(a Dy)/DFID;®, (17

Mij :3e4 2 EV,u(I ,J)_1[W<O|AZ;|,LLJ></.LJ|AXJ,|O>
m,v
—x/(0]AZ]| ;) ;| Ay]10)1[2(0]AZ/ | ;)2

—(0]Ax/|v;)>=(0[Ay{[¥)?]}, (19

where the sums overandj now run only over electron$_,j’
is the expectation value of in the ground state, i.e., it is the

center of the atom associated with chajgér{=r
and

gu—

J I

Bij:RIJ'i";i/al_;j,aJ- (19

Also |,uj> denotes the state when all atoms are in their

ground state except for atonwhich is in the exciteg state
labeled u, which has energy, (j) relative to the ground
state andg, ,(i,j)=E,(i) + E,(]). Here(u;|Ar;|0) is non-
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a'(] ;w)262§ (<0|yj,zj,|ﬂj><ﬂj|Xj,|0>_<o|xj,zj/|:“j>

X{uilyjlon/o—E,()], (22

,yr(i;w):eZEV (2<0|Zi’|yj>2—<O|Xi,|Vj>2_<0|yillvj>2)/

X[w_Ev(i)]
(23)

= aji;0)— Fap(i;0)—a)(i,0),
whereal’w is the u-v component of the polarizability tensor
with respect to the molecular frame. Hepé(w) is the an-
isotropy of the polarizability and’ () is the higher-order
guadrupole-dipole response functigwhich Kats calls the
gyrotropy), both taken in the molecular frame, as indicated
by prime superscripts. Here these quantities are given by a
sum over the corresponding properties for the individual at-
oms. We assume that the relevant excited states are localized
p states, in which case the gyrotropy can be related to the
polarizability:

a'(] ;w)=92§ (yj,<o|zj,|:U’j><:U’j|Xj,|0>_;j/<o|zj,|:u*j>
X{uilyjlo)/[o—E,(j)]

=3y] an(j;0)— X ay(j;0).

(29)

In addition the factof5;; depends on the’ component of the
position of theith atom, whereas in the bare multipole ex-

zero only wherj refers to an electronic charge. We also find pansion used by Van der Meet al. and Kats, onlyR,,

that

(Dy'j-ay) &
ECA
X[2(ui|AZ]|0) = (ui|AX[[0)*—( ;| Ay/[0)?],
(20)

~(1)_
KEJ)_

> Eu ()t

o

32 [PP!y— PPy

i

where the sums ovérandi’ are over atoms angl, is the«

component of the dipole moment vector in the ground state

evaluated in the molecule-fixed coordinate systéfor this

calculation a local dipole moment was assumed, but thi?
n

does not necessarily imply the existence of a dipole mome

of the molecule as a wholelNote that the above expressions,

since they have already been averaged over rotations ab
the long axis, are invariant with respect to rotation of eac
molecule about its long axes parallelep.

Our result for«(?) is closely related to that previously
obtained by Van der Meegt al. [13] and by Katg[14]. To
obtain a form close to that obtained by Kats, we write

1 s
Mij:ﬁf—mal(j;w+i0+)'}’,(i;_w+i0+)dw’
(21

where

appears. Because we do not include zheoordinate within

the multipole approximation, we can treat long molecules in
an appropriate way, as is reflected in the sum over atoms of
S - One sees that the chirality of the molecule is incorpo-
rated in o', which vanishes if the molecule has a mirror

plane[27]. In k{}), the chirality of the moleculé is incor-

porated in terms like

7'=2, [pixpiry— PP (2 — 2 1. (25)

sy
1

P the case of classical interactions, it was not possible to
construct a third rank tensor of the mass moments which was
zero for achiral molecules and nonzero for chiral molecules

2], because such a mass moment tensor was symmetric
under interchange of any pair of its three indices. Here, how-
ever, one sees that’ and 7' arex,y,z elements of tensors
that are not symmetric in all indices and that, therefore, can
be used as an indicator of chirality.

It is interesting to evaluate these expressions for some
specific geometry of a chiral molecule. For this purpose we
treat in some detail a helical molecule, patterned after DNA.
Then we introduce local atomic coordinates whose axes co-
incide with the axes defined by the local excifestates. We
assume that these axes, shown in Fig. 3, are identical to those
of the tangent, the normal, and the binormal unit vectors,
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nematic, which locally is a good description of the CN. For
moleculel this average should be taken subject to its long
axis being specified by the fixed value af. The single-
molecule orientation distribution functiqm(&),) must be in-
dependent ofa;, and also should be invariant undar—
—a. Specifically, correlations betwegh andy, are allowed
[29], as is discussed in Appendix B. For any function of

molecular orientatiorf (w) this average is

~ 1 ~ ~ ~
[f(w)]avzzf p(w)f(w)dy de, / fp(wl)d%-
(28

FIG. 3. Local atomic coordinate system, defined by the unitHowever, when the molecule is not strongly biaxial, or when
vectorse), , showing that the local excitquistates define the orien- the molecule is perfectly aligned along the nematic direction,

tation of the local axes. Her€ is the unit vector tangent to the the assumption thai(c:)) is independent of, , as is usually
helix, the unit normak; lies along the radius of curvature, and the done[13,14, is sufficient. This approximi’:li[ion which we
binormal unit vectok is the third member of the triad of mutually ..} the u,nia;(ial approximation, will be used in t,his paper. In
perpendicular unit vectors. addition, to preserve invariance undgf —a, , we will also
project out of the calculation terms i) ; that are even i

. . .
which we callé],, VY'th w, respectivelyz, %, andy, so that 54 ina; . This step can be done at the end of the calculation
we can relate they, , to its componentsy, , in the local using Eq.(15).

atomic frame as Our calculation of,;, like previous oneq13,14, is
analogous to that of the well-knowR © interactions be-
a;(s(j)ZZeZz E,L(i)_1<Mj|r}'u|0>2(e]'ﬂ'e'y)(eﬁ'ﬂ'efs) jtween. W|dgly separated n(_eutral 'atoms. Quantum quctuathns
w involving dipole moments in excited states are treated within

S N AN NG IS second-order perturbation theory. Short-range quantum re-

_(e“‘ ey)(eﬁ%‘ e‘s)aw(])' (26 pulsion is often treated in aad hocfashion via a classical
One should note the following general points in Connec_central—force interaction between atoms but this effect will

tion with our results. First, the result in E6LE) shows that not be discussed here. We take the interaction Hamiltonian

Kl(Jz) can be viewed as arising from a superposition of inter_H,J for moleculesl andJ to arise from the Coulomb inter-

actions between local centers of chirality on one moleculé"‘ctlon between thith charge on moIecuIb_ denotedt; , and
with centers of anisotropic polarizability on another mol- its counterpart on moleculé Thus we write

ecule. As is well knowr13], this result implies that chirality q9.q;

can be induced by the interaction between a chiral molecule Hy=> X . (29
and an achiral one that has a local center of anisotropic po- < /S5 [Rytri—rjl

larizability. In contrast, the result in ERO) is a three-body

interaction between two local dipoles on one moledutam- We use Eq(12) to write

bined with resulting chiral strength’) with a local aniso- il 2 -12
tropic polanzg@hty of th_e second mo_IecuIe. Finally, we HUZE 2 # 1+_2Pij'Dij+_2pi2j . (30)
mention that it is interesting to generalize these results to a iel jed Ui | Djj
flexible polymer the orientation of whose backbone may
vary appreciably over its length. wherep;; = p;— p; and

lIl. CHIRALITY Dij=Ri+z/a-zja. (31)

FROM INTERMOLECULAR INTERACTIONS Note thatDij is evaluated fo'Pi:Pj:O-

We now turn to the calculation of,;. For this purpose We now expand with respect to transverse coordinates to
we give a brief discussion of how the average over orientaobtain
tions is to be done. In general, the orientation of tlle

molecule is specified by the three Euler anglgsg,, and Hy= S i, _ 1 D _ p; N 3[pj-Dyi1?
¥, for which we adopt the definition of Ro4e8], as is N ey Dy p2PirHiT 552 D4
illustrated in Fig. 1. In particulare, and B, are taken to . b b
specify the orientation of the long axis of the molecule. So 5(p;- Dij]S 3[p;-Dyjl , 3pﬁ
we write - 5 7 Pij 2

2D, 2D} 8D/

a =sin B, cosa, g+ sin B, sina e,+cospie,. (27) L

15[p;-D;1* , 35[p;-Dijl*
Within the spirit of mean-field theory we should average the T4 D6 pij T 8 D8 e
interaction energy between moleculeendJ over the single- " " "
molecule orientational distribution function appropriate to a (32
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Note that this expansion is valid if the charge distributions of(relative to the ground statef the state when moleculds
the two molecules do not overlap one another. Strictly speakandJ are in state$n;) and|n;), respectively.
ing, the validity of our treatment requires satisfying this con- The obvious step of substituting the expansion of (86)
dition for all configurations with nonnegligible weight in the into Eq. (33) leads to rather complicated algebra. We now
partition function. classify terms according to their order i}, . Since we do
We now consider an evaluation of the interaction energyhot assume the length of the molecules to be much less
between two molecules treatirig,; via perturbation theory. than the separatioR,; between molecules, in counting pow-
The first term is the ground-state expectation value of thexrs of R;; we considerL/R;;~1. As we shall seeE,;
Coulomb interaction between atoms on different molecules— R;;° [30], wherep=7 for two-molecule terms and=6
If we negIeCt biaxial correlations between orientations of ad'for one-molecule terms. According|y, we drop all contribu-
jacent molecules and we simply average this interaction oveions which are of ordeR, ,” with p>7. Also, we drop con-
the uncorrelated rotations of the two molecules, subject tQihutions which are proportional to odd powers @f since
their long axes being fixed, then we find the resulting interhese will vanish when we average over rotation about the

action to be completely achir22]. Accordingly, to obtain long axis of the molecules. Thereby we obtain
an effective chiral interaction frorft{,; when such biaxial

correlations are neglected, it is necessary to evaluate the en-

2
ergy of interaction within second-order perturbation theory, [Epla=—| S |(H'J)”|”J?00|
whereby S e Enn, N
|(HIJ)n| nJ'OO|2 0:,0:0:
/ NS , Qigi-q;d;-
Ey=- Z E ’ (33 = 2 E 2 [5ij;i’j’;n]av%u
n Ny nn, ii'el j,j’ed MmNy nny

where the sums are over states)(|n;)) of moleculel (J) (34)

and the prime indicates exclusion of the term when both
molecules are in their ground state. H&g, is the energy wheren is shorthand fon, ,n; and

2
: _[ 1} 1 p; 1| |3 Dp?| | 1 1) p5 | | Pivj
= oo o | Tlas 5 2 03| |53
D|] on Di/j/ no DIJ on Di/jl no D'] on Di'j’ no 4 D'] on Di’j' no
2] [ p2 2 2
N Pi-Dij| | pri-Di | 3 (py-Dyj) Pirjr 9| (pij-Dyj) (pijr-Dyrjr) l
3 3 2 5 3 4 5 5
Dij Jonl  Prir oo Dij  Jnol Pivirlgn Dii Tl D o,
, ;
(pij-Dij)p| | pirjr-Dirjr pi-Dij| | (pij-Dir)®
-3 e D3 +5 3 D’
ij no iy’ on i Jno iy’ on
3p; 150} 5, 3%py Dyt | 1
— — —— (pj- Dyt 5 . (35
aD:  2D] apy | D,

When one averages over independent rotations of the tW@/hereArizri—<0|ri|O)Eri—r_i. To leading order in R,
molecules about their long axes, using E), one sees that \ye have
the first two lines of Eq(35) do not lead to a chiral interac-
tion. (ni|Dij0)=—(mi|Az/|0) (& Dyj)D;; %,
We imagine the virtual statgs} in Eq. (35) to be a linear vy e e

combination of excited atomig states. Accordingly, all ma- —11A\ ' Ao I~ I~

: L9 n;n;|D;; 7|0)=—(n;n;|Az Az{|0;0:)[3(q - D;;)(a;- Dj;
trix elements can be chosen to be real. Also, in this model we< iniIDij710) = —{mn;|Az/ AZ{{0,0;)[3(2y- Dyj)(2y- D)
take no explicit account of exchange and correlation effects —a-a,D2]D;°, (37)
beyond what is included in self-consistent atomic orbitals. e
ThUS., tis permISSIbIe to label ele.CtronS aCCOfdlng tO. thelﬁNhere|ninj> is the Statdwhose energy relative to the ground
atomic location. Then, for the matrix element of an arbitrarystate isg, , ) in which atomi is in excited statén;), atomj

i

functionf of r; we can write is in state|n;), and all other atoms are in their ground state

<ni|f(ri)|0)=V;f(r)|ri:7<ni|Ari’a|0) andD;; was defined in Eq(19). Thus[Di’jl]O,n is of order at
o leastR,; for single-molecule terms and of order at leBgf®
+O((n;|Ar{,Ar{4]0)), (36)  for two-molecule terms. This argument shows that the last
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line of Eq.(35) does not contribute at leading order iRy If both molecules are in excited states in the virtual state
and that we have only to deal with the second and third line$ n,” we may seti=i’ andj=j’. If only one molecule, say
of this equation. the Ith one, is excited in the virtual state, theandj’ may

We now carry out the average over the orientations obe different. We will consider these two cases in the next two
moleculed andJ subject to their long axes being fixed to be, sections.
respectively, alongy anda;, using Eq.(13) and we keep
only c_hiral terms of the form written in_Ec(B). This proce- IV. TWO-MOLECULE TERMS
dure is algebraically extremely complicated. However, the
fact that the relevant excited states are undoubtedly strongly In this section we carry the sum in E(8) over excited
localized leads to drastic simplifications. Accordingly, we stategi,n;j,m), in which moleculd is in state|i,) with its
will evaluate Eq.(35 within a model in which each mol- ith atom excited to itsith state and moleculd is in state
ecule has a narrow band of excited states. If we iggt |j,) with its jth atom excited to itsnth state. Because we
=1[%,;+x3], then the chiral terms which arise from per- are dealing with localized states, these virtual states are ob-
forming the orientational averaQeee Appendix ¢|ead to tained from the ground state Only by interactions inVOIVing
the result electronic charges on atornsf moleculel andj of molecule
J. Thus we no longer need consider here the presence of
positive nuclear charges. Neglecting contributions of relative

e S 094/ yi | [ X7 order ¢/E) (as discussed in Appendix)Pwe may set
Ko= < -~ —En ; 2 E D3 =i" and j=j’ in Eq. (38), so that the contribution from
b Y no on virtual states in which both molecules are excited, indicated
, r s by the superscript2), is
X Yz, ] y p pR2)
3 13 4 ’ [
>0 2 on -3 |2 %) [
ror T E 3 3
_ Xi/Xj’(D-a{) (Xi’yj’) hen M D/ on\ B7 /o
D5 " D 3 on Xi, yi, Zj/ Xir XJ-,(D' al) Xi,yj’
: “\o3) e |73 T X
Xi/yjl(D'ai) X X no on no on
D> [\ Dy, _[Xiyi(D-a) | XX
1! ror D5 D3
n yIX](Da|) yi/y]'/ no Oon
5 13 ro! 1,
D o' D on N yiX;j(D-&) YiYi
rr D5 D3
y’y’(Da_I) Yo X, n0 on
- = 'DS 5,; +eo (39 y/(D-a) »
no on [ YiYi q Yi X (39
D° D3 '
n0 on

where nown is shorthand fom;,n;, D=D;;, D'=D;/;/,

and the dots represent terms we dropped which do not con- We now evaluate this expression using the procedure of
tribute within the approximation we invoke in which the rel- Eq. (36). To illustrate the calculation for the first two terms
evant excited states are strictly localizédowever, our re- of Eq. (39) we write

sults can be generalized to allow the excited states to extend

over a small complex of atoms, if one simply lets the indices Ti=(y/ D 3)onlX/ (?j’ + AZJ’,)Dis]nO
label electrons in complexes rather than those on ajdros. o

localized excited states, all matrix elements are diagonal in — (XD })only{ (z/ +Az))D " *]5
their site indices. Nonlocal corrections to our results will be

small in the parametet/E, wheret is a hopping matrix =(y{D %) on[x{ (AZ))D®]5o

element which sets the scale of the width of the band of
excited states anH is a typical energy of the excited states

relative to the ground staf@4]. However, it is important to

check that these nonlocal corrections are not proportional t§XPanding the other matrix elements in accord with &)
a lower power of 1R, than the local ones we keep. An @nd recalling that both molecules are excited in the virtual

analysis of the relative importance of nonlocal terms is giverstate, we obtain
in Appendix D, where we show explicitlyalbeit only for

—(%{D"*)onlyi (AZ)D ™ *]np. (40)

typical terms when both molecules are excited in the virtual (yi’D‘3)0n=(Ari’aAzj’)OHVi’an’z(V{ D3
statg that nonlocal contributions to the chiral interaction oc- _
cur at the same order inRY; as do the local ones, but they =(Ay/AZ])o,V{,D 3

are smaller by a factor of ordefE. This result justifies our o ot o =3
subsequent neglect of nonlocal effects. +(AZ{AZ)onyi[Vi,V;.D"]. (413
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Here we have dropped matrix elements lik&r(,Ar{z)o, e"
which involve higher than dipole excitations and would i
therefore vanish for thp symmetry we have assumed for the
low-lying excited states. In any event, sindg~a,, the
Bohr radius, this term would be smaller than those we keep
by a factor of order 4,/R). To write the second line, one

notes thaD depends on{ andr; only throughz/ andz] .
Similar relations hold for the other terms T, e.g.,

(X{ AZ{D~®)po=(AX{ AZ])poD ~*+x{ (AZ{ AZ])oV{,D >,
(41b)

(Xi' Dfa)On: (AXi'AZJ-’)Oan,1573
+x{(AZ/AZ))oV[,V/D 3, (410

(Y{AZ{D )= (Ayi,AZj')n0573+yi' (Azi,AZj,)nOVi,zais'
(410

Thereby for the first two terms of E439) we obtain
T1=[x/ (Ay{ AZ])n(AZ{ AZ])ng
Y (AX/ AZ])on(AZ{ AZ{ ) o]
X[(V4D 3)(V,D 3)—-D ¥(V,V,D 1.
(42)

Treating the other terms in EG39) similarly, we obtain

~K.<§>=si2j (e*/D)[a-a,—2(a - Dj)(ay- Dyj)/DF ]

X 2 E,(i.0) Y[ (0| Az] | 1) | AX]|O)
—x/(0]AZ{| ) ;| Ay]|0)1[2(0]AZ/ | ;)?
—(0|AX{[vi)2—(0|Ay/| )1}, (43

wheren and v range over the labels y, andz of the local
atomic excitedp states andE, ,(i,j) is the energy of the
virtual state relative to the ground statén principle, this

FIG. 4. Locally defined principal axes for weakly chiral mol-
ecules with largeg (left) and smallq (right). Note that the axis
nearly collinear with the long axis of the molecule is thaxis for
large q and thez axis for smallg. In Egs. (489 and (48b) the
anisotropy of the polarizability needed is with respect to the long
axis of the molecule.

based on Eq(43), when written in the form of Eq(16),
reduces to that of Van der Meet al. [13] and Kats[14]
when M;; does not depend onandj. However, wherL is

not much less thal, the fact thatS; involves an average
over distances between atorfrather than simply the dis-
tance between the centers of mass of the two molegules
leads to very different results. In any case, it is important to
realize thatM;; should be evaluated with respect to localized
states, as is done here.

A. Helical molecule

In this subsection we give a concrete evaluation of the
above expression for two identical helical molecules. In the
above formulas, position operators are given in the coordi-
nate system fixed in the molecule while matrix elements are
taken with respect to atomjestates which are referred to the
principal axes locally defined for each atom of a molecule.
Let us introduce the parametric representation of coordinates
of an atom on a helical molecule:

z’=s, x'=acogqs), Yy’ =asin(Qqs), (44
whereq, the chiral wave vector of the helix, is defined so that
a right-handed molecul82] hasq positive. The locally de-
fined principal axes for theth atom atz’ =s are chosen in
the following way(see Fig.

energy can depend on the positions of the excited atoms.

However, in our simplified treatment we will neglect such

dependencg. In addition note that the expression given

above for7<,(32) must be averaged with respect to up and down

directions oflth and Jth molecules, as in Eq15). If the

excited states have a degeneracy with respect to spin, then ) S .

the sum over and » should be extended to include a sum Wherec*=[1+(aqg)*)] . Hereg(; is the tangent vector to

over spin indices. However, since singlet-triplet transitionsthe helix atz’=s,€ is a unit vector along the radius of

are nearly forbidden, the multiplicity due to spin does notcurvature az’ =s, ande is the unit vector along the binor-

affect our results. Thus we obtain the result written in Eq.mal or the third orthogonal directiof83]. We assume that

(16). the principal axes for excite@ states coincide with these
As discussed in the preceding section, our result is similaprincipal geometric directions. If we Writel”M:(’)i;We,’V,

to that given by Van der Meest al.[13] and Katg14]. The  then the inverse transformationéﬁzoiwe{’ﬂ.

important new aspect of E§43) is thathJZ) is expressed as Note that the local axes are defined so that the matrix

a sum of contributions from pairs of atoms, one on eactelements in Eq(43) are

molecule. This formulation is consistent with the concept of

local chiral centerg31]. For L<R our expression fok(2 (milAr,|0)= 0., ui|Ar}|0),

€ =cogqs)g +sin(gs)e),
gy =cl—sin(qs)e,+cogqs)e;—age; ], (45)

€, =c[—aqgsin(qs)e,+aqcodqs)e;+ €],

(46)
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Where(,uilArZ|0) is nonzero only ifo= u. Thus, in terms of —<Zj|AZ]'|0>2/Ezz)]- (47
local atomic coordinates we may evaluate Ef) to obtain

M;;=3e*c?a2q[(xi|AX/|0)2((5] AZ]|0) Yy,

2 5 > This quantity cannot depend on the locations of siteadj

_<yj|ij |0) [Bxy) +cT1-2a°07] because it is invariant against rotation about the long axis of

(v IAVZ10Y2((z | AZ" IOV E...— (vi| AV |0Y2/E the molecule and all locations on the helix are equivalent
ilAYII0(Z]AZ]0) Ty~ (v AY]10) VB, once end effects are neglected. Thus, neglecting end effects,

+c[2-a%q%)(z|AZ'|0)2((y;|AY]|0)*/E,, we obtain the limiting results,

(ZAz'10)?  (x|Ax'|0) (y|Ay’|0)?

6e*a? < Ay”|0 2(
gl | ylAy”|0) E, 2E,, 2E,,
(z]AZ'[0)2  (x|Ax"|0)2  (y|Ay”|0)?
o " 2 _ — 2 <
< (z|AZ"|0) ( E. 2E. 2E,, ) (ag)°<1, (483
M. =M= " ” "
) o o 18107 _taxlor_@iszion
q Eyy 2By 2B,y
(y|Ay"|0)*  (x|Ax"|0)? <ZIA2”|0>2>
_ " 2 _ _ 23 . 4
\ (z|AZ"|0) ( £, SEL, o, || (01 (48D

In both limits, the molecule is only weakly chiral, as we  The macroscopic chiral wave vectos and R are both

illustrate in Fig. 4.(To measure chiral strength the criterion taken perpendicular to the nematic direction. EOR,;<<1,

of Ref.[22] may be invoked. we havea, X a;- R;;= — QR?cog¢r, where ¢y is the angle
Now let us considek(?) as a function of the molecular betweenR,; and Q. Then the chiral energy per molecule

length L. For simplicity we assume that the molecules arefrom virtual states with two molecules excite#f?), is given

aligned exactly along their local nematic directions. Also weby

simplify the calculation by considering only the case when

R,; is perpendicular t@, . Thus we will set g<2)5%§ (Ejj)=-1 cos’-q')RK(z)

_ _ _ 3

a-ay=1, (Dj-a)(Djj-a)=(z—12)%
5L 1 L)
53R (R

D2 R2+(Z|_ZJ)2 (49) ')’MPZ(QR)

Then L?(51R*+ 72R?L?+ 29L4)
+
96(R?+L2)3

(51

=M (1D}))[&-a~2(D;j-&)(D;-a)/Dj] o _
gl In obtaining this result we approximated the sum o¥éy a
sum overy nearest neighbors in the plane as specified in Eq.

R2 2
N M fuz fuz zd _(—'ZJ) (49), so that codpr— 3. From the discussion in Appendix E
Li2) - Y[R2+(z—2,)]° we are led to believe that the result of H§1) will not be
seriously modified by taking a more realistic distribution of
p?M|15L (L) LA(5IR*+72R%L%+29L%) nearest neighboring molecules. We identify this result with
R_ 32Rt n R 96(R2+L2)3 ' the contribution to the torque fieldin the Frank free energy
from virtual states with two molecules excited:
(50) )
(2) 2
whereN is the number of atoms in a molecule g N/L is h®=— 5—: yMp 5L Etan 1 E)
the number of atoms per unit length in the molecule. For this QQ 40R 32 R
simple calculation the average of H45) is superfluous, so 4 - 4
that K,(JZ)—K(Z) The asymptotic result fot <R that «(2’ LROSIRTH 72RL7+297) (523
~R78 can be seen in previous calculatiofis,14. How- 96(R?+L2%)3
ever, even in this limit, the fact tha{? is proportional td_?
is not apparent from the previous results. To our knowledge, M p?L? L<R (52b

our result thatc(?~L/R for L=R is a new one. ~ 4R°



588 S. A. ISSAENKO, A. B. HARRIS, AND T. C. LUBENSKY PRE 60

157 yM p?

& R

(529 0.010

where we took the volume per molecul@, to be(Q=LR?

for L=R andR?® for L<R. ForL<R,h®«(L?/R%, consis-
tent with the previous results of Refll3,14], whereas for
L=R,hDx1/R’.

0.006

G(S,e,aq)

B. Numerical estimate of the macroscopic pitch 0.002

Now we want to estimate the value of the pitch using the
result for £ obtained above. Intuitively one expects that the
polarizability tensor will have its largest component tangent
to the helix and that the anisotropy of the polarizability in the
plane perpendicular to the tangent will be small. Essentially,

0.002

we will attribute the anisotropy of the polarizability to the
anisotropy in the excitation enerdy, . Therefore, somewhat
arbitrarily, we will take all the matrix elements like
|( |Ar”|0)|, whereu=x,y,z, to have the same valua,,

aq

FIG. 5. The function G(6,7,aq)=[ag/(1+a%g?)](s

where a, is of order the radius of an atom. We therefore — ;) (aq) versusaq for 8=% and 5=0.

parametrize the excitation energies in E4j7) as

EJE=1+15+y EJE=1+16-7, E/E=1-15,

(53

where E is the average excitation energy. Within our as-

sumption of constant matrix elements the paramefieand

7 characterize the anisotropy of the excitation energy an
through it the anisotropy of the atomic polarizability. When
this anisotropy is small, we find that

3e*alal aq v
M=-—F 17 2%? (6—m)¥(aq)
B 3e4agaG
=-—g G(4n.a0), (54)
where
5—3(aq)*(6—37)
W(aq)= P (59
(1+a°q°)
and
c(smaq =2 Dy iag (56)
,77,8Q)= 1+a’ q)-
The corresponding results fat2) are
3e*atap?L?
Ky =—"—"%gge Cldnaaq), L<R (573
45meajap?l
_—— =
1285R7 G(5,77.aQ), I— R
(57b

ThusM is quadratic in the anisotropy of the polarizability
and

3yetajap®l?
h<2>:_TE‘RQG(5,n,aq), L<R (583

457 ye*ajap?
~ B1ER’

=

=

G(8,7,a9), L=R. (58

This conclusion is a natural one: surely the torque field must

éiisappear when the anisotropy of the polarizability is turned

off. Also, whenE,=E, (i.e., whené= 5), the chiral con-
stanto’ vanishes. To see that note that witgs=E, , one of

the principal axes for each atom can be taken to be perpen-
dicular to the axis of the helix, in which case the matrix
elements appearing i’ are invariant with respect to the
mirror operationz’— —2z'. To illustrate the dependence of
h®) on the molecular chiral wave vectqr we show in Fig.

5 G(48,7n,aq) versusaq for fixed values ofs and 5. There
one sees thah(® is maximal foraq of order unity and
decreases rapidly away from this maximum. Of course, an
experimental test of this dependence is difficult since varying
g at constanp involves structural changes in a molecule. To
treat small chirality we takaq=1/3 (or ag=3) and we set
a,=1 A, E=8 eV (these parameters correspond to an
atomic polarizability a=2e%a%/E=27a3), a=7.5 A,y
=6,L=200 A,R=20 A,p=3 A1 6=1/5, and 75
=0. With the volume per molecule; LR?, the chosen val-
ues of the parameters correspond to volumetric density of
molecules of about 40% and a dielectric constant 1
+4mapl/Q~1.3. Then the torque field is approximately
h=4.5x10"*% (dyn/cm). If now one takes the Frank con-
stantK, to be 107 dyn, then the macroscopic pitch of the
liquid crystal will beP=27/Q=27K,/h=—14 um (or 28

um forag=3). If we had takens=3/10 andz =0, then the
pitch would be—4.5 um (or 9.0 um for ag=3).

It may be seen that the computed pitch is longer than one
usually finds experimentally for a system consisting of mol-
ecules of the above size. There are two possible explanations
for this discrepancy. First of all, our approximations, al-
though improved over previous ones, may still not be suffi-
ciently accurate. For example, two helices of radius 7.5 A
at a center-to-center separation of 20 A have their nearest
groups separated by only 5 A . Under these conditions, the
expansion in terms of even the transverse coordinates of the
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atoms may not be rapidly convergent. The second possible 402
reason for the discrepancy between calculated and observed
pitches would be that an explanation of the pitch of choles-
terics requires consideration of steric interactions. We are
presently considering how our arguments might be improved

to discriminate between these two explanations. - «‘L’\

If one can find molecules for which quantum chiral inter- ’. »
actions considered in this section are dominant, then the fol- a A ““*
lowing remarks are relevant. Notice that for helical mol- ' "‘
ecules the torque field can have either sign in both the large e, ““‘ ‘

g and smallq limit, depending on the signs ofé¢- ») and ES 1
(6—37). This is in contrast to the situation for steric inter- v

actions, for which it is believef34] that the contribution to <
h from the repulsive(i.e., steri¢ chiral interaction between

molecules is negative for smajland is positive for large. FIG. 6. TMV, adapted from Ref35]. We indicate a possible
Helical m0|eCU|eS Wh|Ch dO not fO||OW the Sign pl’ediction axis a|0ng which the d|p0|e moment of each Comp|ex m|ght be
for h due to repulsive steric interactions might constituteoriented. In the situation shown here, the largest component of the
examples of molecules for which the quantum dispersiortipole moment of the complex is radial.

forces dominate the chiral interactions. In general, the den-

sity dependence of the quantum and steric contributiots to atoms, whereagwill still label electronic charges. Then the
will be different. Thus, if these two mechanisms compete, itpreceding equation can be reduced to

is likely that the sign oh could depend on the density.

~ (Di/j-ay)
(H— 'n ! p 1
V. ONE-MOLECULE TERMS o 6”2,- LPixPiry = PirsPiy] D3D},
In the model of a molecule considered before we sup-
posed it to consist of He-like atoms. In reality one would xe?, E. () ' [(wi|AZ{|0)2— 3(u;|Ax{]0)?
expect the outer electronic shell of atoms to be deformed by K
the interaction with nearest neighbors. In general, constituent - %(M”Aylf 10)?] (603
atoms or complexes will possess a dipole moment. Hence it
is of interest to consider the situation when one of the mol- =W, W,, (60b)

ecules is in its ground state in the virtual state of a two-

molecule system. Up to now this case was ignored, althouglwhereW, is the factor on the first line of Eq609 and W,

as we shall see, it may play a significant, if not dominantthat on the second and third lines of this equation. In writing

role. this result we assumed that for typical atom®ne has
From Eq.(38) we obtain the following expression for the . 7.,>p. x.,. Once again, in this expression one has to

additional contribution, denotea(}’, to «,; from virtual  carry out averaging with respect to independent up and down

states in which only one molecule is excited. We still invokeorientations of both molecules. But this average turns out to

the approximation of localized excited staf@d]. But then  be superfluous for the model of a helical molecule which was

terms in which only moleculd is excited require evaluation introduced above.

of &;.i»jn With j=]', buti andi’ are arbitrary and similarly As in Eq. (45), we introduce components of the atomic

when only moleculd is excited. For a molecule in the ex- dipole moment with respect to the principal axes of the atom,

cited state we use the same approximation as before, again which case we have

expanding the denominator with respectdo to get a non-

zero matrix element. For the molecule which remains in its Py = Py cos(qs)—cpg sin(gs) —caqp, sin(gs),
ground state in the virtual state, one has to include both signs
of charge at each site. Thisee Appendix Fwe find that Py =Py SiN(Qs) +cp; coggs) +caqp, cogqs), (61)
~ —— —— (Dyj-ay) p,=—caq@;+cp;.
KP=6 > e (XY, X V) == _ _ _
ii'elijed DijDi’j The componenpy, is essentially the radial component of the
atomic dipole moment and is nonzero for helical geometry.
XE E#(j)71(<ﬂj|Azj’|O>2_%<Mj|AXj,|O>2 For instance, for the molecule TMV, shown in Fig[#5],
© this radial component may be appreciable. In such a case we
, write
—3(ulAy{10)?). (59

o o P51 =PiP{ 1 PPy
In Eq. (59) we sumi andi’ over all the charges in a given
atom, in which case;x; is replaced by,;, wherep; is now =[px*+c’(py+aqp;)®lsina(s,—s)] (623
the expectation value of the dipole moment of tktie atom, 5 .
in its ground state, so thatandi’ from now on refer to =posina(sy —sp)]. (62b)
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FIG. 8. The factory,=W¥(aq)X,(qL,L/R) as a function of_
for two values of the molecule wave numhpe0.0444 A1 (plot

to Eq. (68) the quantity plotted gives the dependence of the torque?) @ndq=0.1333 At (plot 2 with R=20 A, a=75A, =02,

field h® on the chiral wave vector of a molecuie Note that the
molecule is achiral if eitheq—0 or q—os.

We now substitute this form into E§60a and assume per-
fect alignment as in Eq49). Then the summand is symme-
trized and we writeV; = p3X;L/R®, with

- 1-Ls2+ 55 —si(si+510)]

X,(q,0)=3 S N
1(q ) % [1+Lz(Sj_Si)z]Slz[l‘f‘Lz(Sj_Sir)z]SIZ
X (s, ='5)sinq(s; —s)1, (63)

where s=s/L,q=qL, and L=L/R. To evaluateW, we
again invoke the model of E@53), in which case, for small
anisotropy, Egs(26) and (44) enable us to write

W= E, "[(|82/10)— 5 (il Ax] )2 = 3(u;|Ay]1)?]
"

_(Xax10)?  (ylay’|0)* 2(ag)® -1

—e?
2By 2By 1+(ag)?

(z]Az"|0)? 2—(aq)?
+
2E;  1+(aq)?

2,2
e?aj

¥(aq), (64)

E

where ¥ (aq) is defined in Eq(55). Using the asymptotic
evaluations in Appendix G, we thus have the results

e*a2d?L4p? .

T\P(aq)qﬁ(qu), a<L<R (659
=l

8e*aid?p3qL )

—ErgY(agli(gR), L>R (65b)

and »=0. According to Eq(68) whenL>R (so thatQ) =LR?) the
quantity plotted gives the dependence of the torque fi€itlon the
lengthL of a molecule.

where d is the effective size of the dipole moment;,
=ed,
d(x)=—(3/2)(d/dx)[(sinx)/x]?, (66)

and

| ,(qQR) = J‘me—(1/2)[x2+(qR/x)2]XndX. (67)
0

Now we evaluatén following the procedure of Eq51) in
terms of the chiral energy per molecu#? due to one-
molecule effects:

hwo  EY R refagdiL) a.L
=~ 00~ 40 VW= | ZEReq | Y(@X(@.L).

(68)

Using the evaluations of Appendix G, we obtain the
asymptotic results,

ye*a2d?L4p® 1

—ERe Y(@awe(zql), a<L<R (693
h=

2 e4a2d2 3

%me(aq)@(qu), L>R. (69b)

Here again we see from the appearanc® ¢&q) that chiral-

ity requires a nonzero anisotropy of the polarizability char-
acterized by and». Since the factoW (aq) also appears in
Eq. (58), we see that the critical valuéf any) where h
changes sign agis varied is only determined by the geom-
etry, at least within our simple model. For concentrated sys-
tems, the limitL>R is the most relevant and for this case
Fig. 7 shows howh® depends on the molecular chirality
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when the length of the molecules and the density of atoms that the combination of these two mechanisms could chuse
are fixed. Note that the variation 6f") with the molecular ~ to change sign as a function of density or temperaf@fs.
chirality q strongly depends on details of molecular geom-In Fig. 8 we show the behavior of the quantity,
etry since only a fixed number of atoms is allowed on a=W¥(ag)X,(qL) as a function ofL for R=20 A, p
helical thread. Figure 7 shows that fag of order unity or =3 A~1, §=1/5, andy=0 for two fixed values of the mo-
less, whereh® is appreciable and may give a short pitch, lecular chiral wave vector. In particular, it is noteworthy
h( is positive, whereas for steric interactionss believed that for largel, Y (and thereford®)) is independent of.

to be negative for smatj [7,34]. Since increasing the density To get some idea of the relative importanceh6f andh(®),
probably causes steric interactions to dominate, it is possibleonsider their ratio:

2L%d%) (1+a’g? —1,/1
(1) | 3a%a ag (6—n) "#(39qL), L<R (709
h a
= h(z) 1024Q3d2p - L
| 2eazez |(1T@%%)(8=n) Hi(AR),  L>R. 700
a

One sees that even witlia, as small as 0.03, this ratio can responsible for th&® ¢ dispersion interaction between neu-
easily be of order unity. tral atoms. We identified two distinct physical effects de-
To numerically estimate the pitch arising from the consid-pending on whether one or both molecules were excited in
ered interaction we will take parameters of a system anghe virtual state of the two-molecule system. In implement-
constituent molecules chosen in the preceding section. Thefhg this calculation we used a modified multipole expansion
if ag=1/3 one findsh"'=0.5(d/ap)? dyn/cm. If molecules in which only coordinates transverse to the long axis of the
possess a local dipole moment, the resulting dipolar interagnolecule were expansion parameters, so that we could treat
tions may lead to strong biaxial correlations between neighrOng molecules which usually are the building blocks of lig-

boring molecules. Using the evaluation of the dipolar inter- ;4 crystals. The contributiovtl(Jz) to x|y from virtual states

action energy in terms of the integral analyzed in Appe.nd')ﬂ/vith both molecules excited has a form similar to that found

G, we estimate the order of magnitude of the dipole—d|poleb -
. ; : Van der Meeret al. [13] and Kats[14]. For a helical
interaction to beV g4~ (d/ay)?10° K. So if we suppose that y i

ad~(d/ag) PP molecule of length. we find thatx(?)cL2/R® for L<R and

the biaxial correlations due to dipole-dipole interaction ) ; > )
among molecules is negligible when it is less than 100 Kki3’<L/R’, for L=R,;. The contributionx;;’ to «; from
then one must haved(ay)?<10 2. At the upper limit of  Virtual states with only one molecule excited is usually only
validity of our calculations d/a,)2=10 3 and the macro- dominant when the local atomic dipole moments are large
scopic pitch due th® will be PM=27K,/hM=125um.  enough to give rise to significapossibly long-rangebiax-
As the density of local dipoles is increased, the macroscopital correlations. Both mechanisms give rise to a chiral inter-
pitch becomes smaller. For instance, if we dk&t,=1/3, we  action between a chiral molecule and an achiral one that has
get a pitch of order 0.Jum, although this estimate will be a local anisotropic polarizability. Our formulation leads to
significantly modified by biaxial correlations, which have numerical estimates of the pitch which are larger than that
been neglected in our treatment. Sinke)~p® and the found in many cholesterics. Whether this discrepancy is an
dipole-dipole interaction is proportional j, it is conceiv-  artifact of the expansion in transverse coordinates along with
able that for much larger molecule$™) could be significant  a disregard of biaxial correlations between molecules or is an
without the dipoles being large enough to induce long-rangéndication that steric rather than quantum interactions are the
biaxial order. Finally, wheraq is larger than unityas for  microscopic origin of macroscopic chirality is not clear at
TMV), this mechanism leads to a very large pitch for almostpresent. The role of biaxial correlations between molecules is
any choice of parameters. As mentioned in Sec. IV B, it isconsidered elsewhef&5].
possible that larger values of the pitch would be obtained if (2) We evaluatedk,; and the torque fieldh for helical
the role of the transverse were treated exactly rather than byolecules as a function of the wave veaprvhich describes
an expansion. the chiral structure of an individual molecule. We found that
the sign ofh depends on the details of the anisotropy of the
local atomic polarizability. For instance, for¢)?<1, the
sign ofh(® (the contribution tch from virtual states in which
Here we put our work into the context of current researchonly one molecule is excit¢chas the same sign a§ the
and record our conclusions. local anisotropy of the polarizability. One expecisto be
(1) We introduced a simple model of localized polar ex- positive because presumably the polarizability along the tan-
cited states that enabled us to make an explicit calculation ajent of the helix is larger than that along perpendicular di-
the chiral interactionk,;a X a;-R,;, between molecules  rections. This sign oh(") is opposite to that expected from
andJ due to quantum charge fluctuations analogous to thossteric interaction§34]. As for steric interactions, one expects

VI. CONCLUSION
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h*) to change sign ag is increased, but our calculations

indicate that this only happens whif) is so small that it is [Vis]a= M{a%,{ﬁ} Nayag, o ooaniby by 19
hardly likely to be the dominant mechanism for macroscopic

chirality. Whené is positive and large, the sign of the two- X[Malvaz ----- an(pl)]a\’[NﬁLBZ ----- Bm(pJ)]aV'
molecule contributions td is negative for smallag and (A1)

positive for largeaq, just as expected for steric interactions.

However, our calculations indicate that normafi{) is not where[ 1, indicates an average over orientations Mhdnd

significant. . . .

. N . N are tensors of arbitrary rank which are functionals of a

(3) Here we calculated the effective chiral interactions bydensit on the molecule in question. For classical two-bod

averaging the orientation of the molecule over configuration?meragtions these tensors are multi 'ole moments of the for?/n
with the long axis fixed. Even within mean-field theory, P
wherein each molecule is described by a single-molecule ori-
entational distribution function of the three Euler angles, the
only required symmetry in the locally nematic state is that it R RRAREE
be invariant against rotations about the nematic axis. As dis-

cussed in Appendix B, this requirement still permits biaxial For classical two-body interactions these tensors are thus lin-
contributions to the orientational probability distribution ear functions of the density, so that the orientational average

which we neglected. ~ of the tensor is the same as the tensor evaluated for the
(4) These calculations suggest some general observationgsientationally averaged density:

First of all, the interaction from virtual states with two mol-
ecules excited gives rise to a two-point chiral interaction in
the form of an integral over the long axis of each molecule.
This result gives a formal justification for introduction of a
chiral interaction between “chiral centers” on one molecule This means that classically the interaction averaged over the
with a center of local anisotropic polarizability on another orientational motion of moleculg say, is the same as the
molecule. However, this same characterization dostsap-  interaction would be for a molecule having the averémeer
ply to the mechanism involving local permanent atomic di-orientation$ shape. Thus, classically, spinning a chiral mol-
pole moments. The dipolar mechanism leads to an intrinsiecule leads to two-body interactions characteristic of a
cally three-point chiral interaction of a type which, as far asuniaxial, i.e., achiral molecule. Quantum mechanically, the
we know, has not yet been proposed. It would be interestingituation is different, because in second-order perturbation
to observe such an interaction for helical molecules whicttheory the tensok, say, in Eq(A1) is a bilinear function of
have a local radial dipole moment. the densityp(l) of the form

(5) Our calculations can potentially be generalized in sev-
eral directions. For instance, there seems to be no reason why

“n(pl):j drpl(r)ralraz et 1ran- (Az)

[Mal,az ..... an(p)]av:Mal,az ..... an([p]av)- (A3)

our results cannot be taken over immediately to discuss the Mo ay, ..., an:f p(r)drj dr'p(r")T(r,r")

interaction between flexible polymers. There the average

over spinning(within a tube surrounding the convoluted XT gt kr/ cor! (A4)
@ A Aprq an’

polymer shapecan still be taken. Then in Eq16) one

would replacey by its local value at atorn Our calculations , i ) ,
can also be applied to liquid crystal systems containing AvhereT(r,r’) depends on the spatial correlations of the im-

mixture of chiral and achiral molecules. There one has twd®0rtant excited states, and EGA3) is incorrect. In other
types of interactions to consider. The first of these is thavords, the nonlinear fluctuation of the electric field of a mol-
interaction between adjacent chiral and achiral molecules t§cule due to quantum fluctuations has a chiral component
which the results of this paper apply directly. The second igha}t survives an average over rotations and thereby distin-
the interaction between more widely separated pairs of chirdluishes between right-handed and left-handed molecules.
molecules. For this interaction, our result g ought to be

multiplied by e~ 2, wheree is the static dielectric constant. APPENDIX B:

BIAXIAL ORIENTATIONAL CORRELATIONS
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APPENDIX A: QUANTUM AND CLASSICAL AVERAGING
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Likewise, keeping only relevant terms, we write
#L([p;- DI°D ) no([pij - DI°D~*)onlav
[2(Lpi-DI?D ™ *)no([p;- DI?D ~®)on+ 9([p1- D]
X[pj-DID"®)no([pi-DILp;-DID *)onlav-  (CH)

The first term leads to zero antisymmetric contribution. In
the second term there are two equal contributions, one from
taking the antisymmetric term in the average oper the
other from the antisymmetric term in the average gwerSo

Ts

we write
— / -5
FIG. 9. Distribution for whichy— 3 is fixed. T3=9¢€,,,[ (17D aD gD o
ro -5
APPENDIX C: ORIENTATIONAL AVERAGES X(1i,pjaD 4D oD *)on€aypiplav
—9 ! ! -5 /A -5
In this appendix we evaluate the orientational averages = 2€u0(TiT:D oD gD )no(riyr ;04D 5D )on
(indicated by brackets,],,) of the terms in Eq(35). In this X €qypip( 855~ 835235)- (C6)

calculation, we should keep in mind that we only need keep

terms which include one antisymmetric tensor. Also onlyThen, using the symmetry between the two matrix elements,
averages of even numbers of powers of componengs afe e have

nonzero. Finally, terms obtained by interchanging the indices

i andj (labeling atoms on different molecubesan be in- T3=9[R><a+'aJ](ri’ij'yDaD_s)no
cluded implicitly. With these understandings we use @8§)
to write X (ri,MrjlfrD yD 5Zi, D_S)OnEV’)’Z( 50(7_ a,,4 7) .
_ - C
T.=[(p;-DD )2y -DD ol €
=2[(piaD D *)no(pisD gD *)onlay We setz/ =z/ + Az . The term inz vanishes. Thus
— ’ -3 ’ -3 —
= €08y y€uz(1,D oD ™) no(ri,DgD ™ ")on T3:9Rxal'aJri/,u(ri,Mrj,VDaD_S)nO
— ! -3 ’ -3
—[Rxal'a,]][(ri,usz )nO(rin )On X(rj’TD)/D&(AZiI)D_s)OnEVTZ(ﬁay_alaal‘y)'
_(ri,,uDig)nO(ri,vzjD73)On]6,uvz (Cy

=2[RXa-a](r{,Z/D"*)no(r{,D " *)on€urz- (C1)  The matrix elements are symmetric functionsoind . So
) ) the antisymmetry of the tensor causes this term to vanish.
In terms involving four powers of transverse COMpONentSa igher order inR;;* there would be nonzero contributions

. . . _1 . .
contributions at the order iR,;” which we need require that ., "this term. But at the order we consider there are none.

two components refer to atomand two to atonj. Thus The remaining terms in Eq35) vanish for reasons simi-
- _ lar to those which mad&; vanish. So the only contributions
=—3[(p..-DI2D"5 2p-3 ; 3 ;
To=—2[([pj DI"D )no(piiD ™ “)onlav that survive are those written in E(88).

==3l([p- D]ZDis)nO(szDis)On]av

—6[([pi-DI[p;- DDno([pi- pID *)onlay. (C2) , , , _
In this appendix we discuss nonlocal corrections con-
The first term gives rise to no antisymmetric terms and carained in Eq.(38) from terms wherei #i’ and/orj#j’.

APPENDIX D: NONLOCAL EFFECTS

be dropped. The second term leads to Rather than give a general argument, we will illustrate the
nature of the argument by considering specifically the non-
To=—3[(r{,DpjsD gD *)no(r{,PjeD  >)onlav local corrections to the first term in E(B8). For this purpose

, _5 , _3 we assume that the “unperturbed” energigg, can be
*3LriuDaiapisD D) nolTi421505,D on obtained from a Hamiltonian of the form l
_36,uvzeaﬁpa|p<(ri,y,DapjﬁDBD75)no(ri,vpij73)On]aV'

(c3) H=Ho+Vio=Ho* 2 [1)ti*igl, (DY

The first term gives zero antisymmetric contribution. The

second and third terms give identical contributions. So ~ WhereH, is completely local:

Tz=3[R><a.-aJ](r{Mrj’V[D-aq]D‘5)no(ri’ﬂr;’7D‘3)0neV(ﬂ-) Ho=2, lia)EXial. (D2)
C4 ia
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We assume the states to be strongly localized so|tﬁ5t 1 1 1 v 1
a H : — = +
<E{ for all indices. ~ & Eo—Hy Eo—Hy "PE,—TH,
Now we consider the contributiof, to «;=3[x|;
+k31] from the first line of Eq(38). Thus we write + 1 v ! v 1 + D6
! S Eo—Ho "PEq—Hy "PEg—Ho (b8
4 iy -3 whereEy— Hy~E, whereE, the typical excitation energy, is
To— e O riaDi' _ri/ﬂZj/D-/-, O . . . .
& ' much larger thar, a typical hopping matrix element. This

equation implies that when it requireshops for an electron
—<O 0> €upr- (D3) to move from sitel to sitei’ andn hops for an electron to
move from sitg to sitej’, then the matrix element will be of
relative order {/E)(™*™. Thus
In this appendix all coordinates are taken relative to axes
fixed in the molecule. Thus/* here denotes what we called
(r")# in the notation of Eq(11). For simplicity we consider N(t/E)VfN(t/E)(Zi_Zi+1)/R|83- (D7)
here only the contribution from virtual states in which both
molecules are excited. In that case, the sums are only ové¥e see that the ratio of this nonlocal contribution to the local
electrons. contribution of Eq(38) is of orderAf/(r /R?J), wherer | is
Now we expand the matrix elements according to Edg typical value of; or y;. This ratio is thus of ordert(E)
(36), as was d_one_ in Eq41). Thereby we get the corre- X(zi4+1—2)/r, . Normally (z,,,—2z)/r, is of order unity,
sponding contributiordk, as so indeed the nonlocal contributions are of relative ot¢Er
and can reasonably be neglected.

1
-3 -3
r'iaZiDjj E‘ri’BDi’j’

AfEf(Zi ,ZJ' Vv Zjr ,er)—f(zir ,er Vv Zi ,Zj)

1 _
- ZAr. _ V. r. D3
5"”_<0Arigmiﬂg“"“mlf 0> [(VieVirinDi”) APPENDIX E: POSITIONAL CORRELATIONS
X(Vir Voo zr D3)=(V.,V. 1. 2D 3 In this appendix we consider how energy of interaction
(Vi 21D = (VigVinhiz Dy ) for the system of molecules is effected by the relative distri-
— . ; e _
X(VirgVir 010,012 1€ bution of molecules. A simple way to address this issue is to

evaluate the chiral interaction as a functionZpf=2, thez

1 — 5 component oR,;. We assume that it suffices to do this for
=0 ArigAranAri/oArjr 0)[(6:.V,Dj; helical molecules, in which case the calculations can be done
_ B - - - explicitly. Previously we had seZ=0 and had considered
+1;, ViV, nDﬁs)wavﬁﬂD;f’f + 50szvj,TDijj3, the contributior_1 to the torque fie_ld from a shell of six neigh-

. o . o bors taken to lie in the equatorial plane. Here we show nu-
+5Tzri/ij'TDi7j3r)—(5gﬂ5nzDi]3+ 8¢u2V;,Di; merically that this approximation is quite reasonable. We

L o study the dependence 8f;=%;;S;; onZ,;. We still assume
+5nzzjVi§Dij3)(5ij,TDi_,j3, perfect nematic order, so that(=a;=e,. Then the sum in

o o Eq. (50) becomes
+ri’VVi/UVj’TDi7j3’)]€;LVZ' (D4)
Su(2)=2 [RP+(Z+2-2)°] *[R°—(Z+2—2)?],
Here we dropped terms of ordeerj. In evaluating the "
gradients, note thabD;; depends orr;(r;) only via z(z). (E1)
ThusVigvj,,Di]3 is only nonzero forg= p=z. and we see that
The terms of greatest interest are those of ord&/;1/

because such terms are of potentially lower order than the K3(2)  S,(2)
local terms we kept of order Bf;. These leading-order 2(0) = S,(0)° (E2)
terms are 1

For the one-molecule terms we similarly note that the

1 — — dependence in Ed59) is reproduced by writing
5K|J:<0‘AriMAerE.ArirvArjz 0>(Di’j§3’VjZDij3 -
~ — —5 (D-,-~aJ)
. 1 K (2)% 2 qigi (XY, =Xy ==
_DIJ Vi'ZDi’j’)E/.LVZE O Ari#Aerz,Ari,,,Al’jZ O ii/j DijDi’j
2 o o\ el -
X[f(zlizlizl’lzj’)_f(zl'1ZJ’iZ|iZ])]i (D5) — pO(E—’_Z_I/_ZJ )Slr[q(zll__ZI)]_
i [RP+(Z+2 —2))? 1R +(Z+72/,— 2))*]>"?
wheref~1/R/; . Note that when the states are localized, i.e., (E3)
wheni=i" and j=j’, the factor in large square brackets

vanishes. Now consider expandiéigas in Eq.(D1), so that in the notation of Eqs(59) and (60).
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10 5 1 — — 3
\ 1 ~—3e 2 qjqj,<0‘Axi’EAxi’ 0> YDy
, iij
\ - g
il BN - X (Djj- @)Dy - (F2)
> \Y
§ Now we carry the sum ovey (j') over the charges that
g 0.6} ; comprise the dipole momempt(p;,) on atomj (j’) to get
3 .
T=-3e%>, <0Ax-’—Ax-’ 0>[p'~,5--,3
04} \ ; i te—t yIr=i
\
r 7 -3 S P
\\ 2 +pzjfyjf(vj'zDij/ )]{pxj(Dij 'aI)Dij5
0.2} A\ . L= — _5
A +P2X;: Vil (Dyj-8) Dy °T}H+ - -
\
0.0 R ~-3e?>, (0 Ax-’le-' 0)p.,p.D; 2
0 100 200 i i g=a yj’ PxjHij
RA)

X (Dy-a)Dij %+, (F3

FIG. 10. The ratiac(7(Z)/x(’(0), whereZ is thez component _ . . -
of R, for molecules of length =200 A and intermolecular sepa- Where nowj andj’ refer to atoms. Restoring the additional
rationR=20 A. Forn=1 we show essentially indistinguishable t€rms to preserve rotational invariance we obtain
curves forq=0.0444 (A) ! and forq=0.1333 (A)!. Forn .
=2 this ratio does not depend an T=— 3822 1z 0>}

i €
(F4)

X[ PyjPxj— Py;Py;1D;; *(Dyj @)D °.

Ax{

1

<0Ax 0>+<0Ayi’szi’

These results allow us to compute the rai)(Z)/
«M(0) which is shown in Fig. 10 fon=1 andn=2. This
result is representative of the situation for a wide range of o )
parameters. As one might expect, the contribution to th&/Vhen the indices are relabeled, this result reproduces part of
torque field decreases strongly B&/L increases towards Eq. (59).
unity. Accordingly, the approximation of including only the

effect of equatorial neighbors is a good one. APPENDIX G: EVALUATION OF INTEGRALS IN SEC. V

In this appendix we evaluate the integbg) in Eq. (63
and an integral needed to evaluate the dipolar interaction
energy between two long helices.

Consider the asymptotic evaluation of E§3), first, in
the limit L>R. End effects can be shown to be negligible, in

APPENDIX F: CONTRIBUTIONS TO H®

In this appendix we discuss the evaluation of the one

molecule contributions ta,;. We consider the terms in the
last two lines of Eq(38). We will analyze the one-molecule . ) ) ~ .
contributions which arise when=i’ butj andj’ are in which case the final summatidovers;) mtroduces a factor
general different. In the intermediate excited state only atorﬁ.’f N anc_i one setsjzo. Also we consider only the con-
i is in an excited state. Atomjsandj’ remain in their ground tinuum limit in which the sums are repla~ced by integrals.
states. Calling this territ we write One can show that correct to leading ordeL.irt, the limits
on the integrals can be extended=xoc. Thus we have the

> asymptotic result

0

L1
S=x/x/Djj-aD;®

Xi!yj’,Dij/ g i j

1-13s¢
(l+EZSZ)5/2(1+EZS!2)5/2

(G)

T=—3E eijq]/<o

i’

. (F1) Xl(a,t)~3N3f_wdsf_wdsf

where the dots denote the three additional terms required to X(s'—s)sifqL(s'—s)].
make the expression be rotationally invarigithese can be

reconstructed at the end of the calculatiddsing the expan- For each of the two factors in the denominator we introduce

sion of Eq.(36) we have

T: _3822 qu]r<O[AX|’5”r3
ijj’

_ [P B
+XAZ/(V,,D, ,3)]yj,E{Axi D;;-aD;;®

0>+...

+x/AZ/ Vi [ (Dy;- &)Dﬁs]};j'

the representation

—5/2_ 1

TN

Then the integrations overands’ can be done analytically
and eventually one finds that

foo xle~ (V2P¢gy (G2

X;(q,L—»)=8(pR)*(qR)I5(qR), (G3)
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wherel; is defined in Eq(67) of the text.
The limit L—0 is trivial. We find that

X1(q,L—0)=N3¢(3qL), (G4

where ¢(x) = — (3/2) (d/dx)[ (sinx)/x]>.

Finally we evaluate the dipolar interaction enefgy, be-
tween two long helical molecules, and b, separated by a
distanceR along thex axis. We assume that the radius of the
helix is much less thaR. In this limit, in terms of the atomic
dipole moments we write

2 L2 L2 2 2 1-3/2 n
Ear?| 2| RO+ 2] > [p) cotaz,
—L/2 —L/2

+ ¢ha) —CP} SIN(QZa + Ba) I[P} COLAZy+ ¢hr,)
R2

—cpy sin(qzy+ ép) 1| 1- +[p} sin(az,

2, 2
R+ z3,

+ o) +CP;, COLAZa+ ) 1 Py SIN(AZy + bp)

Eqa= %PZPgLI

PRE 60

+cpy codazy+ ¢p)] |, (G5)

wheref);:pg+aqp’z’,¢a(gbb) is the angle of rotation of
moleculea (b) about its long axis, and,,=z,—z,. Here we
did not include terms involving, which either are indepen-
dent of both anglesp, and ¢, or vanish in the limitL

. In that limit we only need to keep terms which depend
0N z;,, in which case we have

—————|dz
2 ab s
(R2+ Zab)S/2

(GO

OCCOS(anbJr Pab)

where ¢,p= o~ ¢,. Using Eq.(G2) we obtain the final
result

Ega= —Lp?030°1 -1 COS¢ap=—3VaaCOSap. (G7)
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