
PHYSICAL REVIEW E JULY 1999VOLUME 60, NUMBER 1
Quantum theory of chiral interactions in cholesteric liquid crystals
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~Received 16 October 1998!

The effective chiral interaction between molecules arising from long-range quantum interactions between
fluctuating charge moments is analyzed in terms of a simple model of chiral molecules. This model is based on
the approximations that~a! the dominant excited states of a molecule form a band whose width is small
compared to the average energy of excitation above the ground state and~b! biaxial orientational correlation
between adjacent molecules can be neglected. Previous treatments of quantum chiral interactions have been
based on a multipole expansion of the effective interaction energy within second-order perturbation theory. We
consider a system consisting of elongated molecules and, although we invoke the expansion in terms of
coordinates transverse to the long axis of constituent molecules, we treat the longitudinal coordinate exactly.
Such an approximation is plausible for molecules in real liquid crystals. The macroscopic cholesteric wave
vectorQ (Q52p/P, whereP is the pitch! is obtained viaQ5h/K2 , whereK2 is the Frank elastic constant
for twist andh is the torque field which we calculate from the effective chiral interactionk IJaI3aJ•RIJ , where
the unit vectoraI specifies the orientation of moleculeI andRIJ is the displacement of moleculeI relative to
moleculeJ. We identify two distinct physical limits depending on whether one or both of the interacting
molecules are excited in the virtual state. When both molecules are excited, we regain theRIJ

28 dependence of
k IJ on intermolecular separation found previously by Van der Meeret al. @J. Chem. Phys.65, 3935~1976!#.
The two-molecule, unlike the one-molecule term, can be interpreted in terms of a superposition of pairwise
interactions between individual atoms~or local chiral centers! on the two molecules. Contributions tok IJ when
one molecule is excited in the virtual state are of orderRIJ

27 for helical molecules which are assumed not to
have a global dipole moment, but whose atoms possess a dipole moment. It is shown that for a helical molecule
Q can have either the same or the opposite sign as the chiral pitch of an individual molecule, depending on the
details of the anisotropy of the atomic polarizability. The one-molecule mechanism can become important
when the local atomic dipoles become sizable, although biaxial correlations~ignored here! should then be
taken into account. Our results suggest how the architecture of molecular dipole moments might be adjusted to
significantly influence the macroscopic pitch.@S1063-651X~99!12303-1#

PACS number~s!: 61.30.Cz, 36.20.Ey, 87.15.2v
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I. INTRODUCTION

In the cholesteric liquid crystalline phase@1,2#, aniso-
tropic mesogens align on average along a local unit dire
n(r ) that rotates in a helical fashion about a uniform pit
axis. The pitchP of this helix ranges from a few tenths of
micron to 10 or more microns. In fact, solutions of the v
ruses fd and tobacco mosaic virus~TMV !, as well as DNA,
have even much larger pitches@3,4#. Because the pitch is
usually large compared to the intermolecular separat
these systems are locally essentially indistinguishable f
nematics and consequently they are often referred to as c
nematics~CN’s!. The pitch wave numberQ52p/P can
even pass through zero as a function of temperature@1,2#.
The helical structure of a cholesteric phase must result f
the molecular chirality of some or all of its constituent m
sogens. Achiral mesogens form an achiral nematic ra
than a chiral nematic phase. Phenomenologically, the ex
nation of the twist of the cholesteric phase is straightforwa
chiral mesogens must lead to a chiral termhn•“3n in the
long-wavelength free energy density that favors twist. T
tendency to twist is resisted by a twist elastic energy den
1
2 K2(n•“3n)2, whereK2 is the Frank elastic constant fo
twist. If the pitch axis coincides with thez direction, then in
the equilibrium configuration one has

n~r !5~cosQz,sinQz,0!, ~1!
PRE 601063-651X/99/60~1!/578~20!/$15.00
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Q[2p/P5h/K2 . ~2!

~Our definition ofQ is such that positiveQ corresponds to
right-handed macroscopic chirality@5#!. The magnitude of
K2, which has units of energy per unit length, is estima
with good accuracy by dimensional analysis. The charac
istic energy is of the order of the thermal energy,kBT
;kBTNI wherekB is the Boltzmann constant,T is the tem-
perature, andTNI is the isotropic-to-nematic transition tem
perature. The characteristic length is a molecular lengthL, so
that K2;kBT/L. A similar dimensional analysis for the
torque fieldh, which has units of energy/~length2), would
predicth;kBT/L2 andP;L. This is a far tighter pitch than
is observed in any cholesteric. This reasoning indicates
an explanation of the magnitude ofh requires considering a
detailed model of the cholesteric. The chiral structure of c
lesterics also raises some technological issues. It would
very desirable to be able to ‘‘engineer’’ molecules that ha
specific values ofh and thusP or more generally that have
specific temperature dependence forh. To realize this goal, it
is necessary to understand how variations in molecular ar
tecture and electronic structure influenceh. As a first step in
dealing with these issues of fundamental and applied scie
this paper will address some aspects of the calculation oh
from a molecular model.
578 ©1999 The American Physical Society
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In fact, the calculation ofh is highly nontrivial. It involves
the rather complex interactions between mesogens and
orientational correlations they induce. If there are chiral m
sogens, there are chiral interactions, andh is nonzero; other-
wise, h is zero. One typically identifies three types of inte
actions between molecules@6#: ~1! long-range attractive
dispersion~van der Waals! interactions,~2! short-range re-
pulsive interactions, whose origin is the Pauli principle, a
~3! direct Coulomb interactions, which take the form of d
polar, quadrupolar, etc. interactions between electrically n
tral mesogens. The latter interactions are of secondary
portance in many chiral and achiral liquid crystals and w
be ignored here. Initially Straley@7# proposed that the mac
roscopic chirality of CN’s could be understood qualitative
in terms of the packing of screws. These short-range re
sive forces were modeled as hard-core or steric poten
@8–10,19#, reflecting molecular shape, that contribute to t
entropy but not the internal energy. For spherical atoms,
repulsive and dispersion forces can be combined in a si
effective potential such as the Lennard-Jones 6–12 cen
force potential. More generally, interactions between ach
molecules can be modeled as sums over central-force e
tive potentials between pairs of atoms or mass points
different molecules@11#. There are chiral versions of bot
dispersion and short-range repulsive forces. Chiral disper
forces were first analyzed by Goossens@12# and later more
systematically by others@6,13,14#. They found that the domi-
nant chiral interaction between chiral mesogens, calcula
in the limit of center-of-mass separationR much larger than
any molecular dimensionL, was proportional toR27 and to
the product of dipolar and quadrupolar molecular matrix
ements. Various somewhatad hocchiral intermolecular in-
teractions, some based on implementing models equiva
to threaded rods@15–18#, others on surface-nematic intera
tions of chiral dopants@19#, have been introduced mostly a
input to simulations of chiral systems. Models for flexib
mesogens have also been treated@20#.

A chiral molecule is one that cannot be rotated into co
cidence with its mirror image@21#. Chiral molecules canno
be uniaxial: at minimum, their description requires an orth
normal triad of vectors rather than a single vector. A mic
scopic description of chiral interactions involves the co
plete orthonormal triad of axes emblazoned on each of
two interacting molecules. However, as we have mention
apart from very small corrections arising from slow loc
twist, the cholesteric phase is locally uniaxial. It is, therefo
natural to seek effective chiral interactions between eff
tively uniaxial molecules. If a moleculeJ of arbitrary shape
is spun about some axisaJ , it becomes on average uniaxi
with respect to this axis. Thus, general pair interactions
tween moleculesI andJ in a chiral nematic can be reduced
uniaxial pair interactions by averaging over independent
tations of each member of the pair about the local nem
director. The resulting potential is only approximate in tha
ignores orientational correlations between molecules in
plane perpendicular toaI and aJ . In practice, one usually
averages over independent rotations of each molecule a
its body axisa, rather than the more correct average ov
rotations about the local nematic director. We mention tha
is known that the chiral part of central-force potentials~such
as hard-body interactions! vanishes when such correlation
he
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are neglected@22,23#. However, dispersion contributions t
the chiral interaction do not require nonzero orientatio
correlations between molecules. As discussed in Append
and as has been found by several previous authors@13,14#,
the long-range dispersion interaction survives this indep
dent rotation procedure to produce an effective chiral pot
tial between effectively uniaxial mesogens of the form

EIJ~aI ,aJ ,RIJ!5~aI3aJ•RIJ!k IJ , ~3!

where RIJ is the displacement of the center of moleculeI
relative to the center of moleculeJ and only terms ink IJ
which are odd in bothaI and aJ are retained. The effective
interaction of Eq.~3! arises between two chiral molecules
well as between a chiral molecule and an achiral one.

Our derivation of the effective chiral interaction differ
from previous ones@13,14# in two important respects. First
previous calculations of this interaction are based on a m
tipole expansion in the variabler i /RIJ , wherer i is the co-
ordinate of thei th charge of moleculeI relative to the center
of molecule I. Strictly speaking, the multipole expansio
only applies whenRIJ[R is large compared to any dimen
sion of the molecules. This expansion does not apply to p
of molecules whose separation is less than their length
greater than their width. We develop a modified multipo
expansion in which coordinates transverse to long molec
axes are treated as small parameters. Second, the resu
previous calculations are expressed in terms of electric
pole and quadrupole matrix elements of the entire molec
But in a long molecule, typical of those comprising liqu
crystals, we expect the electronic states to be strongly lo
ized @24#. Accordingly, it seems more useful to express
sults in terms of matrix elements within atoms or local co
plexes. In so doing, it is natural to assume the relev
excited state can be reached from the ground state by m
elements of the dipole moment operator. Then, the qua
pole moment operator is easily related to the dipole mom
operator, with the result that the only matrix elements a
pearing in the present paper are those of the dipole mom
operator between local atomic states. In common with pre
ous treatments, we will neglect the effects of biaxial cor
lations between interacting molecules. Accordingly, we w
evaluatek IJ by averaging each molecule independently ov
spinning about its long axis. In future@25# we plan to discuss
how the chiral interaction between helical molecules depe
on the angles describing rotation about their longest b
axis.

We may summarize briefly the results of this progra
Although we do not expand in powers of the longitudin
coordinates of the charges in each molecule, our results
formally not very different from the previous ones@13,14#.
However, by expressing the results in terms of matrix e
ments of localized atomic orbitals, we identify two distin
physical mechanisms. The first is the dipole-quadrupole
teraction previously identified. The second is one involving
three-body interaction between two local atomic dipole m
ments on one molecule and a local anisotropic polarizab
of the second molecule. This second interaction, forma
present in previous work, can dominate the first one in c
tain situations. Furthermore, our approach allows us to
cuss how these interactions depend on the length of the m



t

-

i
bi
ul
os
n

cu
n

ha
p

ib

e

I
g
a

be
om
r-
d
is

r
th
u
u

th
th

cr
ns
s

nt
a
o

be
n
ol
se

o
it
h
f i

in

o
to

t
th
e

sin

ab-

es

l de

the

iral
s-

pic

he

dy
ve
ral
me-

ol-

ion
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ecule. For a helical molecule we find that the contribution
k IJ due to the first mechanism is proportional toL2/R8 for
L!R and toL/R7 for L>R. Results for the three-body in
teraction are more complicated@see Eq.~65!#. In both cases,
the magnitude of the pitch arising from these interactions
a concentrated system of helical molecules with polariza
ity corresponding to a dielectric constant of about 1.3 wo
be 10 mm. This is a larger pitch than one observes for m
concentrated cholesterics. It is possible that this discrepa
is due to some of the simplifying assumptions in our cal
lations, most probably our disregard of biaxial correlatio
between molecules@25#. Alternatively, it is possible that the
pitch of most cholesterics is determined by steric rather t
by quantum interactions. Elsewhere we will apply the a
proach of the present paper to obtain the quantum contr
tions toK2 @25#.

Briefly, this paper is organized as follows. In Sec. II w
give an overview of the calculation of the torque fieldh from
which the macroscopic chiral pitch can be determined.
Sec. III we derive a rather general expression for the stren
of the chiral interaction between molecules in terms of m
trix elements of the dipole moment operators of atoms
tween the ground state and excited states localized on at
The contribution to this effective chiral interaction from vi
tual states in which both molecules are excited is treate
Sec. IV and that in which only one molecule is excited
treated in Sec. V. Numerical estimates of the pitch fo
system of helical molecules are given which show that
quantum mechanism when both molecules are excited is
likely to explain the observed pitch of most cholesterics. O
results and conclusions are summarized in Sec. VI.

II. OVERVIEW OF CALCULATION

In this section we give an overview and a summary of
results of the calculation, given in the next section, of
chiral interaction between molecules. Recently@22# a sys-
tematic formulation was given that expresses the ma
scopic pitch of a CN in terms of microscopic interactio
between molecules. Such a formulation is required in ca
where it is either necessary or desirable to include orie
tional correlations between interacting molecules. It w
shown that for central-force interactions between atoms
different molecules, a nonzero effective chiral interaction
tween molecules could only be obtained when orientatio
correlations, specifically biaxial correlations, between m
ecules were taken into account. In contrast, in the pre
paper we will see that the quantum interactions between m
ecules are not of this type. Thus, in the present context,
permissible to use a simpler and more traditional approac
which each molecule is characterized by the orientation o
long axis, specified by the unit vectora. We will then evalu-
ate the chiral interaction energy between moleculesI and J
written in Eq.~3!. This interaction energy is evaluated with
what we will call the ‘‘uniaxial’’ approximation in which we
independently average over the orientations of the two m
ecules whena is specified for each molecule. In order
calculate the macroscopic chiral pitch it is only necessary
evaluate the chiral part of this interaction, i.e., the part of
form written in Eq.~3!. This interaction energy can then b
added to whatever phenomenological interaction one is u
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to describe the nematic phase which would result in the
sence of chiral interactions.

To make contact with a continuum theory, one introduc
a local order parameter tensor via

Qab~r !5aa~r !ab~r !2 1
3 dab . ~4!

When thermally averaged, this tensor becomes the usua
Gennes–Maier–Saupe order parameter@26,1#. In the long-
wavelength limit, the chiral interactionEIJ leads to a con-
tinuum interaction of the form

Eint5g8E dreabgQad~r !“bQgd~r !, ~5!

where Greek indices label Cartesian components,dab is the
Kronecker delta,eabg is the antisymmetric tensor, the
repeated-index summation convention is understood, and
constantg8 is the macroscopic analog ofk IJ . If we express
Q in terms of the directorn(r ) as

^Qab&T5S~nanb2 1
3 dab!, ~6!

where^ &T indicates a thermal average, then the above ch
interaction leads to the familiar Frank free energy in the pre
ence of macroscopic chiral twist~but neglecting splay and
bend distortions! as @5#

F5 1
2 K2E dr @n~r !•“3n~r !#21hE drn ~r !•“3n~r !,

~7!

where, within mean-field theory,h5g8S2. The main goal of
the present paper is to obtainh from a microscopic model. In
particular, we will obtainh from an evaluation ofk IJ in Eq.
~3!. As we have seen in Eqs.~1! and~2!, a determination of
h leads immediately to the determination of the macrosco
chiral wave vectorQ. In addition, the chiral properties of an
isotropic liquid consisting of chiral molecules, such as t
rotary power, are also related tok IJ .

The interaction between molecules we are going to stu
is the generalization, for chiral molecules, of the attracti
1/R6 term in the van der Waals potential between neut
spherical atoms. This calculation is based on a quantum
chanical treatment of the total Coulomb interactionHIJ be-
tween charges on the two interacting molecules,I andJ:

HIJ5(
i PI

(
j PJ

qiqj

Ri j
, ~8!

wherei PI indicates that the sum is over all chargesqi , both
electronic and nuclear, in moleculeI andRi j is the displace-
ment ofqi relative toqj . In this calculation we neglect any
biaxial correlations between the orientations of the two m
ecules. Within this assumption it has been shown@22# that
central-force interactions@like those of Eq.~8! when taken in
first-order perturbation theory# cannot lead to any chiral in-
teractions. Therefore, we consider the effect ofHIJ within
second-order perturbation theory. The effective interact
between moleculesI andJ is then

EIJ5EIJ~v̂ I ,v̂J ,RIJ!5 K 0UHIJ

P
EHIJU0L , ~9!



e
r
s

be

th
o

ta
h

-
sh
id
but
the

,
of

w-

in-
e

t
ate
To
ave
ar in
that
ns
ken

f
cur

vir-
al

a-
be

les
are

-

th

-
the
le

c
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whereE5E02H0 , with E0 the energy of the ground stat
u0&, H0 the unperturbed Hamiltonian describing noninte
acting molecules, andP a projection operator that exclude
the ground state. Here we have indicated thatEIJ depends on
v̂ I ~andv̂J) which denotes the triad of Euler angles~see Fig.
1! needed to specify the orientation of theI th(Jth) molecule
and onRIJ . BothRIJ andr i , the position of thei th charge in
molecule I relative to the center of the molecule, may
expressed with respect to coordinate axes,em , fixed in space,
as shown in Fig. 2:

RI5RImem , r i5r imem . ~10!

We now must average this interaction energy over
orientations of the two molecules, when the long axes
moleculesI and J are fixed to lie along the unit vectorsaI
and aJ , respectively, and correlations between the orien
tions of the two molecules are neglected. To carry out t

FIG. 1. Left: molecule-fixed coordinate system, defined by
unit vectorsem8 . Right: definition of the Euler anglesa, b, andg
which take the space-fixed axesex , ey , andez into the molecule-
fixed axes,ex8 , ey8 , andez8 . Note thata andb are the usual spheri
cal angles which specify the orientation of the long axis of
molecule,ez

8 , with respect to the space-fixed axes. The third Eu
angleg, not shown here, is the angle of rotation about thez8 axis
which brings thex andy axes in coincidence with thex andy axes
fixed in the body~respectively,ex8 andey8).

FIG. 2. Space-fixed coordinate system, showing the displa
ment RI of the I th molecule and the displacementr i of the i th
charge of theI molecule relative to the center of the molecule.
-

e
f

-
is

average we introduce axes specified by unit vectorseIm8 em-
blazoned on theI th molecule, as shown in Fig. 1, so that

r i5r im8 eIm8 . ~11!

Previously Van der Meeret al. @13# carried out this averag
ing within the multipole expansion. However, since we wi
to treat long molecules of the type usually constituting liqu
crystals, we do not make the usual multipole expansion,
rather expand only in terms of transverse coordinates of
molecule. Thus we set

r i5zi8aI1ri , ~12!

whereri•aI50. @Throughout, atomi ~j! is assumed to be in
moleculeI (J).# Thuszi8 andri are the coordinates of thei th
charge of moleculeI relative to the center of the molecule
respectively, longitudinal and transverse to the long axis
the molecule aligned alongaI5ez8 . Now we expandEIJ in
powers ofr and perform the orientational average over po
ers ofr ~indicated by@ #av) using, e.g.,

@~r i !a~r i 8!b#av5
1
2 ~xi8xi 8

8 1yi8yi 8
8 !~da,b2aaab!

1 1
2 eabgag~xi8yi 8

8 2yi8xi 8
8 !

5 1
2 r im8 r i 8m

8 ~da,b2aaab!

1 1
2 emnzr im8 r i 8n

8 eabgag , ~13!

wherem andn run over only transverse (x, y) coordinates
andag[(aI)g . Thereby we find that

@EIJ#av5~aI3aJ•RIJ!k IJ~aI ,aJ ,RIJ!1•••. ~14!

Here we have written the term responsible for the chiral
teraction between moleculesI andJ and have discarded th
nonchiral terms~represented by•••).

The expressions fork IJ in its most general form are no
very enlightening, although they do display the appropri
symmetry to vanish for molecules which are not chiral.
gain some insight into the meaning of these results we h
had recourse to a model of the excited states, which appe
second-order perturbation theory. Our first assumption is
the important excited states consist of dipolar fluctuatio
from the ground state. In other words, these states are ta
to be the three atomicp statesum i& on atomi. The second
assumption is thatd, the width in energy of the band o
excited states obtained by allowing these excitations to oc
on any atom, is small compared to their energyE relative to
the ground state. This assumption allows us to take the
tual intermediate states to be strictly localized to individu
atoms@24#. Nonlocal effects give rise to corrections of rel
tive order,d/E. Under these assumptions, our results may
summarized as follows. Contributions tok IJ can be classified
into two types, depending on whether one or both molecu
in the intermediate state are in an excited state. These
denotedk IJ

(1) and k IJ
(2) , and will be referred to as ‘‘one-

molecule’’ and ‘‘two-molecule’’ terms, respectively. Our re
sults are conveniently written in terms of the definitionk IJ

(n)

5 1
2 @ k̃ IJ

(n)1k̃JI
(n)#a , where, for any functionf of aI andaJ ,

e

r

e-
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@ f #a5
1
4 @ f ~aI ,aJ!2 f ~2aI ,aJ!2 f ~aI ,2aJ!1 f ~2aI ,2aJ!#.

~15!

Then

k̃ IJ
~2!5 (

i PI , j PJ
M i j Si j , ~16!

where

Si j 5@aI•aJ22~aI•D̄i j !~aJ•D̄i j !/D̄ i j
2 #D̄ i j

28 , ~17!

Mi j 53e4H(
m,n

Enm~ i , j !21@ ȳ j8^0uDzj8um j&^m j uDxj8u0&

2 x̄ j8^0uDzj8um j&^m j uDyj8u0&#@2^0uDzi8un i&
2

2^0uDxi8un i&
22^0uDyi8un i&

2#J , ~18!

where the sums overi and j now run only over electrons,r̄ j8
is the expectation value ofr j8 in the ground state, i.e., it is th

center of the atom associated with chargej, Dr j85r j85 r̄ j8 ,
and

D̄i j 5RIJ1 z̄i8aI2 z̄j8aJ . ~19!

Also um j& denotes the state when all atoms are in th
ground state except for atomj, which is in the excitedp state
labeledm, which has energyEm( j ) relative to the ground
state andEnm( i , j )5En( i )1Em( j ). Here^m j uDr j u0& is non-
zero only whenj refers to an electronic charge. We also fi
that

k̃ IJ
~1!53(

i i 8 j
@pix8 pi 8y

8 2pi 8x
8 piy8 #

~D̄i 8 j•aJ!

D̄ i j
3 D̄ i 8 j

5 e2(
m

Em~ j !21

3@2^m j uDzj8u0&22^m j uDxj8u0&22^m j uDyj8u0&2#,

~20!

where the sums overi and i 8 are over atoms andpa8 is thea
component of the dipole moment vector in the ground s
evaluated in the molecule-fixed coordinate system.~For this
calculation a local dipole moment was assumed, but
does not necessarily imply the existence of a dipole mom
of the molecule as a whole.! Note that the above expression
since they have already been averaged over rotations a
the long axis, are invariant with respect to rotation of ea
molecule about its long axes parallel toez8 .

Our result fork IJ
(2) is closely related to that previousl

obtained by Van der Meeret al. @13# and by Kats@14#. To
obtain a form close to that obtained by Kats, we write

Mi j 5
1

2p i E2`

`

s8~ j ;v1 i01!g8~ i ;2v1 i01!dv,

~21!

where
ir

te

is
nt

out
h

s8~ j ;v!5e2(
m

~^0uyj8zj8um j&^m j uxj8u0&2^0uxj8zj8um j&

3^m j uyj8u0&!/@v2Em~ j !#, ~22!

g8~ i ;v!5e2(
n

~2^0uzi8un j&
22^0uxi8un j&

22^0uyi8un j&
2!/

3@v2En~ i !#

5azz8 ~ i ;v!2 1
2 axx8 ~ i ;v!2 1

2 ayy8 ~ i ,v!, ~23!

whereamn8 is them-n component of the polarizability tenso
with respect to the molecular frame. Hereg8(v) is the an-
isotropy of the polarizability ands8(v) is the higher-order
quadrupole-dipole response function~which Kats calls the
gyrotropy!, both taken in the molecular frame, as indicat
by prime superscripts. Here these quantities are given b
sum over the corresponding properties for the individual
oms. We assume that the relevant excited states are loca
p states, in which case the gyrotropy can be related to
polarizability:

s8~ j ;v!5e2(
m

~ ȳ j8^0uzj8um j&^m j uxj8u0&2 x̄ j8^0uzj8um j&

3^m j uyj8u0&!/@v2Em~ j !#

5 1
2 ȳ j8azx~ j ;v!2 1

2 x̄ j8ayz~ j ;v!. ~24!

In addition the factorSi j depends on thez8 component of the
position of thei th atom, whereas in the bare multipole e
pansion used by Van der Meeret al. and Kats, onlyRIJ
appears. Because we do not include thez8 coordinate within
the multipole approximation, we can treat long molecules
an appropriate way, as is reflected in the sum over atom
Si j . One sees that the chirality of the molecule is incorp
rated in s8, which vanishes if the molecule has a mirr
plane@27#. In k̃ IJ

(1) , the chirality of the moleculeI is incor-
porated in terms like

t8[(
i i 8

@pix8 pi 8y
8 2pi 8x

8 piy8 #@ z̄i82 z̄i 8
8 #. ~25!

In the case of classical interactions, it was not possible
construct a third rank tensor of the mass moments which
zero for achiral molecules and nonzero for chiral molecu
@22#, because such a mass moment tensor was symm
under interchange of any pair of its three indices. Here, ho
ever, one sees thats8 andt8 arex,y,z elements of tensors
that are not symmetric in all indices and that, therefore,
be used as an indicator of chirality.

It is interesting to evaluate these expressions for so
specific geometry of a chiral molecule. For this purpose
treat in some detail a helical molecule, patterned after DN
Then we introduce local atomic coordinates whose axes
incide with the axes defined by the local excitedp states. We
assume that these axes, shown in Fig. 3, are identical to t
of the tangent, the normal, and the binormal unit vecto
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which we callem9 , with m, respectively,z, x, andy, so that
we can relate theam,n8 to its componentsam,m9 in the local
atomic frame as

agd8 ~ j !52e2(
m

Em~ j !21^m j ur j m9 u0&2~ej m9 •eg8 !~ej m9 •ed8!

5~ej m9 •eg8 !~ej m9 •ed8!amm9 ~ j !. ~26!

One should note the following general points in conn
tion with our results. First, the result in Eq.~16! shows that
k IJ

(2) can be viewed as arising from a superposition of int
actions between local centers of chirality on one molec
with centers of anisotropic polarizability on another mo
ecule. As is well known@13#, this result implies that chirality
can be induced by the interaction between a chiral molec
and an achiral one that has a local center of anisotropic
larizability. In contrast, the result in Eq.~20! is a three-body
interaction between two local dipoles on one molecule~com-
bined with resulting chiral strengtht8) with a local aniso-
tropic polarizability of the second molecule. Finally, w
mention that it is interesting to generalize these results
flexible polymer the orientation of whose backbone m
vary appreciably over its length.

III. CHIRALITY
FROM INTERMOLECULAR INTERACTIONS

We now turn to the calculation ofk IJ . For this purpose
we give a brief discussion of how the average over orien
tions is to be done. In general, the orientation of theI th
molecule is specified by the three Euler anglesa I ,b I , and
g I , for which we adopt the definition of Rose@28#, as is
illustrated in Fig. 1. In particular,a I and b I are taken to
specify the orientation of the long axis of the molecule.
we write

aI5sinb I cosa Iex1sinb I sina Iey1cosb Iez . ~27!

Within the spirit of mean-field theory we should average
interaction energy between moleculesI andJ over the single-
molecule orientational distribution function appropriate to

FIG. 3. Local atomic coordinate system, defined by the u
vectorsem9 , showing that the local excitedp states define the orien
tation of the local axes. Hereez9 is the unit vector tangent to th
helix, the unit normalex9 lies along the radius of curvature, and th
binormal unit vectorey9 is the third member of the triad of mutuall
perpendicular unit vectors.
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nematic, which locally is a good description of the CN. F
moleculeI this average should be taken subject to its lo
axis being specified by the fixed value ofaI . The single-
molecule orientation distribution functionr(v̂ I) must be in-
dependent ofa I and also should be invariant undera→
2a. Specifically, correlations betweenb I andg I are allowed
@29#, as is discussed in Appendix B. For any function
molecular orientationf (v̂) this average is

@ f ~v̂ !#av5
1

2pE r~v̂ I ! f ~v̂ I !dg Ida I Y E r~v̂ I !dg I .

~28!

However, when the molecule is not strongly biaxial, or wh
the molecule is perfectly aligned along the nematic directi
the assumption thatr(v̂) is independent ofg I , as is usually
done @13,14#, is sufficient. This approximation, which w
call the uniaxial approximation, will be used in this paper.
addition, to preserve invariance underaI→2aI , we will also
project out of the calculation terms ink IJ that are even inaI
and inaJ . This step can be done at the end of the calculat
using Eq.~15!.

Our calculation ofk IJ , like previous ones@13,14#, is
analogous to that of the well-knownR26 interactions be-
tween widely separated neutral atoms. Quantum fluctuat
involving dipole moments in excited states are treated wit
second-order perturbation theory. Short-range quantum
pulsion is often treated in anad hoc fashion via a classica
central-force interaction between atoms but this effect w
not be discussed here. We take the interaction Hamilton
HIJ for moleculesI andJ to arise from the Coulomb inter
action between thei th charge on moleculeI, denotedqi , and
its counterpart on moleculeJ. Thus we write

HIJ5(
i PI

(
j PJ

qiqj

uRIJ1r i2r j u
. ~29!

We use Eq.~12! to write

HIJ5(
i PI

(
j PJ

qiqj

Di j
F11

2

Di j
2

ri j •Di j 1
1

Di j
2

ri j
2 G21/2

, ~30!

whereri j 5ri2rj and

Di j 5RIJ1zi8aI2zj8aJ . ~31!

Note thatDi j is evaluated forri5rj50.
We now expand with respect to transverse coordinate

obtain

HIJ5 (
i PI , j PJ

qiqj

Di j
F12

1

Di j
2

ri j •Di j 2
ri j

2

2Di j
2

1
3@ri j •Di j #

2

2Di j
4

2
5@ri j •Di j #

3

2Di j
6

1
3@ri j •Di j #

2Di j
4

ri j
2 1

3ri j
4

8Di j
4

2
15

4

@ri j •Di j #
2

Di j
6

ri j
2 1

35

8

@ri j •Di j #
4

Di j
8

1OS 1

Di j
5 D G .

~32!

it
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Note that this expansion is valid if the charge distributions
the two molecules do not overlap one another. Strictly spe
ing, the validity of our treatment requires satisfying this co
dition for all configurations with nonnegligible weight in th
partition function.

We now consider an evaluation of the interaction ene
between two molecules treatingHIJ via perturbation theory.
The first term is the ground-state expectation value of
Coulomb interaction between atoms on different molecu
If we neglect biaxial correlations between orientations of
jacent molecules and we simply average this interaction o
the uncorrelated rotations of the two molecules, subjec
their long axes being fixed, then we find the resulting int
action to be completely achiral@22#. Accordingly, to obtain
an effective chiral interaction fromHIJ when such biaxial
correlations are neglected, it is necessary to evaluate the
ergy of interaction within second-order perturbation theo
whereby

EIJ52 (
nI ,nJ

8
u~HIJ!nI ,nJ ;0,0u2

EnInJ

, ~33!

where the sums are over statesunI&(unJ&) of moleculeI ~J!
and the prime indicates exclusion of the term when b
molecules are in their ground state. HereEnInJ

is the energy
tw
t
-

-
w
c
ls
e
ry
f
k-
-

y

e
s.
-
er
to
-

n-
,

h

~relative to the ground state! of the state when moleculesI
andJ are in statesunI& and unJ&, respectively.

The obvious step of substituting the expansion of Eq.~32!
into Eq. ~33! leads to rather complicated algebra. We no
classify terms according to their order inRIJ

21 . Since we do
not assume the lengthL of the molecules to be much les
than the separationRIJ between molecules, in counting pow
ers of RIJ we considerL/RIJ;1. As we shall see,EIJ

;RIJ
2p @30#, wherep57 for two-molecule terms andp56

for one-molecule terms. Accordingly, we drop all contrib
tions which are of orderRIJ

2p with p.7. Also, we drop con-
tributions which are proportional to odd powers ofr, since
these will vanish when we average over rotation about
long axis of the molecules. Thereby we obtain

@EIJ#av52F (
nI ,nJ

8
u~HIJ!nInJ ;00u2

EnInJ

G
av

52 (
i ,i 8PI

(
j , j 8PJ

(
nI ,nJ

8 @Ei j ; i 8 j 8;n#av

qiqi 8qjqj 8
EnInJ

,

~34!

wheren is shorthand fornI ,nJ and
Ei j ; i 8 j 8;n5F 1

Di j
G

0n
F 1

Di 8 j 8
G

n0

2F ri j
2

Di j
3 G

0n

F 1

Di 8 j 8
G

n0

1F3~ri j •Di j !
2

Di j
5 G

0n

F 1

Di 8 j 8
G

n0

1
1

4F r i j
2

Di j
3 G

0n

F r i 8 j 8
2

Di 8 j 8
3 G

n0

1Fri j •Di j

Di j
3 G

0n

Fri 8 j 8•Di 8 j 8

Di 8 j 8
3 G

n0

2
3

2F ~ri j •Di j !
2

Di j
5 G

n0

F ri 8 j 8
2

Di 8 j 8
3 G

0n

1
9

4F ~ri j •Di j !
2

Di j
5 G

n0

F ~ri 8 j 8•Di 8 j 8!
2

Di 8 j 8
5 G

0n

23F ~ri j •Di j !ri j
2

Di j
5 G

n0

Fri 8 j 8•Di 8 j 8

Di 8 j 8
3 G

0n

15Fri j •Di j

Di j
3 G

n0

F ~ri 8 j 8•Di 8 j 8!
3

Di 8 j 8
7 G

0n

1F 3ri j
4

4Di j
5

2
15ri j

2

2Di j
7 ~ri j •Di j !

21
35~ri j •Di j !

4

4Di j
9 G

n,0

F 1

Di 8 j 8
G

0,n

. ~35!
d

te

ast
When one averages over independent rotations of the
molecules about their long axes, using Eq.~13!, one sees tha
the first two lines of Eq.~35! do not lead to a chiral interac
tion.

We imagine the virtual states$n% in Eq. ~35! to be a linear
combination of excited atomicp states. Accordingly, all ma
trix elements can be chosen to be real. Also, in this model
take no explicit account of exchange and correlation effe
beyond what is included in self-consistent atomic orbita
Thus, it is permissible to label electrons according to th
atomic location. Then, for the matrix element of an arbitra
function f of r i we can write

^ni u f ~r i !u0&5“a8 f ~r !ur i5 r̄^ni uDr ia8 u0&

1O~^ni uDr ia8 Dr ib8 u0&!, ~36!
o

e
ts
.
ir

whereDr i5r i2^0ur i u0&[r i2 r̄ i . To leading order in 1/RIJ
we have

^ni uDi j
21u0&52^ni uDzi8u0&~aI•D̄i j !D̄ i j

23 ,

^ninj uDi j
21u0&52^ninj uDzi8Dzj8u0i0 j&@3~aI•D̄i j !~aJ•D̄i j !

2aI•aJD̄ i j
2 #D̄ i j

25 , ~37!

whereuninj& is the state~whose energy relative to the groun
state isEninj

) in which atomi is in excited stateuni&, atomj

is in stateunj&, and all other atoms are in their ground sta
andD̄i j was defined in Eq.~19!. Thus@Di j

21#0,n is of order at
leastRIJ

22 for single-molecule terms and of order at leastRIJ
23

for two-molecule terms. This argument shows that the l
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line of Eq. ~35! does not contribute at leading order in 1/RIJ
and that we have only to deal with the second and third li
of this equation.

We now carry out the average over the orientations
moleculesI andJ subject to their long axes being fixed to b
respectively, alongaI and aJ , using Eq.~13! and we keep
only chiral terms of the form written in Eq.~3!. This proce-
dure is algebraically extremely complicated. However,
fact that the relevant excited states are undoubtedly stro
localized leads to drastic simplifications. Accordingly, w
will evaluate Eq.~35! within a model in which each mol
ecule has a narrow band of excited states. If we setk IJ

5 1
2 @ k̃ IJ1k̃JI#, then the chiral terms which arise from pe

forming the orientational average~see Appendix C! lead to
the result

k̃ IJ5 (
i ,i 8, j , j 8

(
n
8

qiqjqi 8qj 8
EnInJ

H 2F S yi8

D3D
n0

S xi 8
8 zj 8

8

D83 D
0n

2S xi8

D3D
n0

S yi 8
8 zj 8

8

D83 D
0n

G
23F S xi8xj8~D•aI !

D5 D
n0

S xi 8
8 yj 8

8

D83 D
0n

2S xi8yj8~D•aI !

D5 D
n0

S xi 8
8 xj 8

D83 D
0n

1S yi8xj8~D•aI !

D5 D
n0

S yi 8
8 yj 8

8

D83 D
0n

2S yi8yj8~D•aI !

D5 D
n0

S yi 8
8 xj 8

8

D83 D
0n

G J 1•••, ~38!

where nown is shorthand forni ,nj , D[Di j , D8[Di 8 j 8 ,
and the dots represent terms we dropped which do not
tribute within the approximation we invoke in which the re
evant excited states are strictly localized.~However, our re-
sults can be generalized to allow the excited states to ex
over a small complex of atoms, if one simply lets the indic
label electrons in complexes rather than those on atoms.! For
localized excited states, all matrix elements are diagona
their site indices. Nonlocal corrections to our results will
small in the parametert/E, where t is a hopping matrix
element which sets the scale of the width of the band
excited states andE is a typical energy of the excited state
relative to the ground state@24#. However, it is important to
check that these nonlocal corrections are not proportiona
a lower power of 1/RIJ than the local ones we keep. A
analysis of the relative importance of nonlocal terms is giv
in Appendix D, where we show explicitly~albeit only for
typical terms when both molecules are excited in the virt
state! that nonlocal contributions to the chiral interaction o
cur at the same order in 1/RIJ as do the local ones, but the
are smaller by a factor of ordert/E. This result justifies our
subsequent neglect of nonlocal effects.
s

f

e
ly

n-

nd
s

in

f

to

n

l

If both molecules are in excited states in the virtual st
‘‘ n, ’’ we may seti 5 i 8 and j 5 j 8. If only one molecule, say
the I th one, is excited in the virtual state, thenj and j 8 may
be different. We will consider these two cases in the next t
sections.

IV. TWO-MOLECULE TERMS

In this section we carry the sum in Eq.~38! over excited
statesu i ,n; j ,m&, in which moleculeI is in stateu i n& with its
i th atom excited to itsnth state and moleculeJ is in state
u j m& with its j th atom excited to itsmth state. Because we
are dealing with localized states, these virtual states are
tained from the ground state only by interactions involvi
electronic charges on atomsi of moleculeI andj of molecule
J. Thus we no longer need consider here the presenc
positive nuclear charges. Neglecting contributions of relat
order (t/E) ~as discussed in Appendix D!, we may seti
5 i 8 and j 5 j 8 in Eq. ~38!, so that the contribution from
virtual states in which both molecules are excited, indica
by the superscript~2!, is

k̃ IJ
~2!5(

i j
(

n
8

e4

EnInJ
H 2F S yi8

D3D
0n

S xi8zj8

D3 D
n0

2S xi8

D3D
n0

S yi8zj8

D3 D
0n
G23F S xi8xj8~D•aI !

D5 D
n0

S xi8yj8

D3 D
0n

2S xi8yj8~D•aI !

D5 D
n0

S xi8xj8

D3 D
0n

1S yi8xj8~D•aI !

D5 D
n0

S yi8yj8

D3 D
0n

2S yi8yj8~D•aI !

D5 D
n0

S yi8xj8

D3 D
0n
G J . ~39!

We now evaluate this expression using the procedure
Eq. ~36!. To illustrate the calculation for the first two term
of Eq. ~39! we write

T1[~yi8D
23!0n@xi8~ z̄j81Dzj8!D23#n0

2~xi8D
23!0n@yi8~ z̄j81Dzj8!D23#n0

5~yi8D
23!0n@xi8~Dzj8!D23#n0

2~xi8D
23!0n@yi8~Dzj8!D23#n0 . ~40!

Expanding the other matrix elements in accord with Eq.~36!
and recalling that both molecules are excited in the virt
state, we obtain

~yi8D
23!0n5~Dr ia8 Dzj8!0n“ ia8 “ jz8 ~ ȳi8D̄

23!

5~Dyi8Dzj8!0n“ jz8 D̄23

1~Dzi8Dzj8!0nȳi8@“ iz8 “ jz8 D̄23#. ~41a!
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Here we have dropped matrix elements like (Dr ia8 Dr ib8 )0n

which involve higher than dipole excitations and wou
therefore vanish for thep symmetry we have assumed for th
low-lying excited states. In any event, sinceDr;a0 , the
Bohr radius, this term would be smaller than those we k
by a factor of order (a0 /R). To write the second line, on
notes thatD depends onr i8 and r j8 only throughzi8 andzj8 .
Similar relations hold for the other terms inT1 , e.g.,

~xi8Dzj8D
23!n05~Dxi8Dzj8!n0D̄231 x̄i8~Dzi8Dzj8!n0“ iz8 D̄23,

~41b!

~xi8D
23!0n5~Dxi8Dzj8!0n“ jz8 D̄23

1 x̄i8~Dzi8Dzj8!0n“ iz8 “ jz8 D̄23, ~41c!

~yi8Dzj8D
23!n05~Dyi8Dzj8!n0D̄231 ȳi8~Dzi8Dzj8!n0“ iz8 D̄23.

~41d!

Thereby for the first two terms of Eq.~39! we obtain

T15@ x̄i8~Dyi8Dzj8!0n~Dzi8Dzj8!n0

2 ȳi8~Dxi8Dzj8!0n~Dzi8Dzj8!n0#

3@~“zi8 D̄23!~“z j8 D̄23!2D̄23~“zi8 “z j8 D̄23!#.

~42!

Treating the other terms in Eq.~39! similarly, we obtain

k̃ IJ
~2!53(

i , j
~e4/D̄ i j

8 !@aI•aJ22~aI•D̄i j !~aJ•D̄i j !/D̄ i j
2 #

3H(
m,n

Enm~ i , j !21@ ȳ j8^0 j uDzj8um j&^m j uDxj8u0&

2 x̄ j8^0uDzj8um j&^m j uDyj8u0&#@2^0uDzi8un i&
2

2^0uDxi8un i&
22^0uDyi8un i&

2#J , ~43!

wherem andn range over the labelsx, y, andz of the local
atomic excitedp states andEnm( i , j ) is the energy of the
virtual state relative to the ground state.~In principle, this
energy can depend on the positions of the excited ato
However, in our simplified treatment we will neglect su
dependence.! In addition note that the expression give
above fork̃ IJ

(2) must be averaged with respect to up and do
directions of I th and Jth molecules, as in Eq.~15!. If the
excited states have a degeneracy with respect to spin,
the sum overm andn should be extended to include a su
over spin indices. However, since singlet-triplet transitio
are nearly forbidden, the multiplicity due to spin does n
affect our results. Thus we obtain the result written in E
~16!.

As discussed in the preceding section, our result is sim
to that given by Van der Meeret al. @13# and Kats@14#. The
important new aspect of Eq.~43! is thatk IJ

(2) is expressed as
a sum of contributions from pairs of atoms, one on ea
molecule. This formulation is consistent with the concept
local chiral centers@31#. For L!R our expression fork IJ

(2)
p

s.

n

en

s
t
.

r

h
f

based on Eq.~43!, when written in the form of Eq.~16!,
reduces to that of Van der Meeret al. @13# and Kats@14#
when Mi j does not depend oni and j. However, whenL is
not much less thanR, the fact thatSi j involves an average
over distances between atoms~rather than simply the dis
tance between the centers of mass of the two molecu!,
leads to very different results. In any case, it is important
realize thatMi j should be evaluated with respect to localiz
states, as is done here.

A. Helical molecule

In this subsection we give a concrete evaluation of
above expression for two identical helical molecules. In
above formulas, position operators are given in the coo
nate system fixed in the molecule while matrix elements
taken with respect to atomicp states which are referred to th
principal axes locally defined for each atom of a molecu
Let us introduce the parametric representation of coordin
of an atom on a helical molecule:

z85s, x85a cos~qs!, y85a sin~qs!, ~44!

whereq, the chiral wave vector of the helix, is defined so th
a right-handed molecule@32# hasq positive. The locally de-
fined principal axes for thei th atom atz85s are chosen in
the following way~see Fig. 3!:

eix9 5cos~qs!ex81sin~qs!ey8 ,

eiy9 5c@2sin~qs!ex81cos~qs!ey82aqez8#, ~45!

eiz9 5c@2aq sin~qs!ex81aq cos~qs!ey81ez8#,

wherec25@11(aq)2)] 21. Hereeiz9 is the tangent vector to
the helix atz85s,eix9 is a unit vector along the radius o
curvature atz85s, andeiy9 is the unit vector along the binor
mal or the third orthogonal direction@33#. We assume tha
the principal axes for excitedp states coincide with thes
principal geometric directions. If we writeeim9 5Oi ;mnein8 ,
then the inverse transformation isein8 5Oi ;mneim9 .

Note that the local axes are defined so that the ma
elements in Eq.~43! are

^m i uDr n8u0&5Oi ;rn^m i uDr r9u0&, ~46!

FIG. 4. Locally defined principal axes for weakly chiral mo
ecules with largeq ~left! and smallq ~right!. Note that the axis
nearly collinear with the long axis of the molecule is they axis for
large q and thez axis for smallq. In Eqs. ~48a! and ~48b! the
anisotropy of the polarizability needed is with respect to the lo
axis of the molecule.
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where^m i uDr r9u0& is nonzero only ifr5m. Thus, in terms of
local atomic coordinates we may evaluate Eq.~18! to obtain

Mi j 53e4c2a2q@^xi uDxi9u0&2~^zj uDzj9u0&2/Exz

2^yj uDyj9u0&2/Exy!1c2@122a2q2#

3^yi uDyi9u0&2~^zj uDzj9u0&2/Eyz2^yj uDyj9u0&2/Eyy!

1c2@22a2q2#^zi uDzi9u0&2~^yj uDyj9u0&2/Ezy
e
n

r
r

we
en

h

g

2^zj uDzj9u0&2/Ezz!#. ~47!

This quantity cannot depend on the locations of sitesi and j
because it is invariant against rotation about the long axis
the molecule and all locations on the helix are equival
once end effects are neglected. Thus, neglecting end eff
we obtain the limiting results,
Mi j [M'5
6e4a2qF K yuDy9u0&2S ^zuDz9u0&2

Ezy
2

^xuDx9u0&2

2Exy
2

^yuDy9u0&2

2Eyy
D

2^zuDz9u0&2S ^zuDz9u0&2

Ezz
2

^xuDx9u0&2

2Exz
2

^yuDy9u0&2

2Eyz
D G , ~aq!2!1,

6
e4

q F ^yuDy9u0&2S ^yuDy9u0&2

Eyy
2

^xuDx9u0&2

2Exy
2

^zuDz9u0&2

2Ezy
D

2^zuDz9u0&2S ^yuDy9u0&2

Eyz
2

^xuDx9u0&2

2Exz
2

^zuDz9u0&2

2Ezz
D G , ~aq!2@1.

~48a!

~48b!
le

Eq.

of
ith
In both limits, the molecule is only weakly chiral, as w
illustrate in Fig. 4.~To measure chiral strength the criterio
of Ref. @22# may be invoked.!

Now let us considerk IJ
(2) as a function of the molecula

length L. For simplicity we assume that the molecules a
aligned exactly along their local nematic directions. Also
simplify the calculation by considering only the case wh
RIJ is perpendicular toaI . Thus we will set

aI•aJ51, ~D̄i j •aI !~D̄i j •aJ!5~ z̄j2 z̄i !
2,

D̄ i j
2 5R21~ z̄i2 z̄j !

2. ~49!

Then

k IJ
~2!5M(

i j
~1/D̄ i j

8 !@aI•aJ22~D̄i j •aI !~D̄i j •aJ!/D̄ i j
2 #

5
N2M

L2 E
2L/2

L/2 E
2L/2

L/2

dzIdzJ

R22~zI2zJ!
2

@R21~zI2zJ!
2#5

5
r2M

R6 F 15L

32R
tan21S L

RD1
L2~51R4172R2L2129L4!

96~R21L2!3 G ,

~50!

whereN is the number of atoms in a molecule andr5N/L is
the number of atoms per unit length in the molecule. For t
simple calculation the average of Eq.~15! is superfluous, so
that k IJ

(2)5k̃ IJ
(2) . The asymptotic result forL!R that k IJ

(2)

;R28 can be seen in previous calculations@13,14#. How-
ever, even in this limit, the fact thatk IJ

(2) is proportional toL2

is not apparent from the previous results. To our knowled
our result thatk IJ

(2);L/R7 for L>R is a new one.
e

is

e,

The macroscopic chiral wave vectorsQ and R are both
taken perpendicular to the nematic direction. ForQRIJ!1,
we haveaI3aJ•RIJ52QR2cos2fR, wherefR is the angle
betweenRIJ and Q. Then the chiral energy per molecu
from virtual states with two molecules excited,E (2), is given
by

E ~2![ 1
2 (

J
^EIJ&52 1

2 (
J

QR2cos2fRk IJ
~2!

52 1
4 gMr2~QR!

1

R5F 15L

32R
tan21S L

RD
1

L2~51R4172R2L2129L4!

96~R21L2!3 G . ~51!

In obtaining this result we approximated the sum overJ by a
sum overg nearest neighbors in the plane as specified in
~49!, so that cos2fR→1

2. From the discussion in Appendix E
we are led to believe that the result of Eq.~51! will not be
seriously modified by taking a more realistic distribution
nearest neighboring molecules. We identify this result w
the contribution to the torque fieldh in the Frank free energy
from virtual states with two molecules excited:

h~2!52
E ~2!

VQ
5

gMr2L

4VR5 F15

32
tan21S L

RD
1

LR~51R4172R2L2129L4!

96~R21L2!3 G ~52a!

5
gMr2L2

4R9 , L!R ~52b!
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'
15pgMr2

256R7 , L>R, ~52c!

where we took the volume per molecule,V, to beV5LR2

for L>R andR3 for L!R. ForL!R,h(2)}(L2/R9), consis-
tent with the previous results of Refs.@13,14#, whereas for
L>R,h(2)}1/R7.

B. Numerical estimate of the macroscopic pitch

Now we want to estimate the value of the pitch using
result forE obtained above. Intuitively one expects that t
polarizability tensor will have its largest component tang
to the helix and that the anisotropy of the polarizability in t
plane perpendicular to the tangent will be small. Essentia
we will attribute the anisotropy of the polarizability to th
anisotropy in the excitation energyEa . Therefore, somewha
arbitrarily, we will take all the matrix elements lik
z^muDr a9 u0& z, wherem5x,y,z, to have the same value,aa ,
where aa is of order the radius of an atom. We therefo
parametrize the excitation energies in Eq.~47! as

Ex /E511 1
3 d1h, Ey /E511 1

3 d2h, Ez /E512 2
3 d,
~53!

where E is the average excitation energy. Within our a
sumption of constant matrix elements the parametersd and
h characterize the anisotropy of the excitation energy
through it the anisotropy of the atomic polarizability. Whe
this anisotropy is small, we find that

M52
3e4aa

4a

2E S aq

11a2q2D ~d2h!C~aq!

[2
3e4aa

4a

2E
G~d,h,aq!, ~54!

where

C~aq!5
d2 1

2 ~aq!2~d23h!

~11a2q2!
~55!

and

G~d,h,aq!5S aq~d2h!

11a2q2 DC~aq!. ~56!

The corresponding results fork IJ
(2) are

k IJ
~2!52

3e4aa
4ar2L2

2ER8 G~d,h,aq!, L!R ~57a!

'2
45pe4aa

4ar2L

128ER7 G~d,h,aq!, L>R.

~57b!

ThusM is quadratic in the anisotropy of the polarizabili
and

h~2!52
3ge4aa

4ar2L2

8ER9 G~d,h,aq!, L!R ~58a!
e

t

,

-

d

'2
45pge4aa

4ar2

512ER7 G~d,h,aq!, L>R. ~58b!

This conclusion is a natural one: surely the torque field m
disappear when the anisotropy of the polarizability is turn
off. Also, whenEz5Ey ~i.e., whend5h), the chiral con-
stants8 vanishes. To see that note that whenEz5Ey , one of
the principal axes for each atom can be taken to be perp
dicular to the axis of the helix, in which case the matr
elements appearing ins8 are invariant with respect to th
mirror operationz8→2z8. To illustrate the dependence o
h(2) on the molecular chiral wave vectorq, we show in Fig.
5 G(d,h,aq) versusaq for fixed values ofd andh. There
one sees thath(2) is maximal for aq of order unity and
decreases rapidly away from this maximum. Of course,
experimental test of this dependence is difficult since vary
q at constantr involves structural changes in a molecule. T
treat small chirality we takeaq51/3 ~or aq53) and we set
aa51 Å , E58 eV ~these parameters correspond to
atomic polarizability a52e2aa

2/E527a0
3), a57.5 Å ,g

56, L5200 Å , R520 Å , r53 Å 21, d51/5, and h
50. With the volume per molecule,;LR2, the chosen val-
ues of the parameters correspond to volumetric density
molecules of about 40% and a dielectric constant,e51
14parL/V'1.3. Then the torque field is approximate
h54.531024 (dyn/cm). If now one takes the Frank con
stantK2 to be 1027 dyn, then the macroscopic pitch of th
liquid crystal will beP52p/Q52pK2 /h5214 mm ~or 28
mm for aq53). If we had takend53/10 andh50, then the
pitch would be24.5 mm ~or 9.0mm for aq53).

It may be seen that the computed pitch is longer than
usually finds experimentally for a system consisting of m
ecules of the above size. There are two possible explanat
for this discrepancy. First of all, our approximations, a
though improved over previous ones, may still not be su
ciently accurate. For example, two helices of radius 7.5
at a center-to-center separation of 20 Å have their nea
groups separated by only 5 Å . Under these conditions,
expansion in terms of even the transverse coordinates o

FIG. 5. The function G(d,h,aq)5@aq/(11a2q2)#(d
2h)C(aq) versusaq for d5

1
5 andh50.
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atoms may not be rapidly convergent. The second poss
reason for the discrepancy between calculated and obse
pitches would be that an explanation of the pitch of chol
terics requires consideration of steric interactions. We
presently considering how our arguments might be impro
to discriminate between these two explanations.

If one can find molecules for which quantum chiral inte
actions considered in this section are dominant, then the
lowing remarks are relevant. Notice that for helical mo
ecules the torque fieldh can have either sign in both the larg
q and smallq limit, depending on the signs of (d2h) and
(d23h). This is in contrast to the situation for steric inte
actions, for which it is believed@34# that the contribution to
h from the repulsive~i.e., steric! chiral interaction between
molecules is negative for smallq and is positive for largeq.
Helical molecules which do not follow the sign predictio
for h due to repulsive steric interactions might constitu
examples of molecules for which the quantum dispers
forces dominate the chiral interactions. In general, the d
sity dependence of the quantum and steric contributionsh
will be different. Thus, if these two mechanisms compete
is likely that the sign ofh could depend on the density.

V. ONE-MOLECULE TERMS

In the model of a molecule considered before we s
posed it to consist of He-like atoms. In reality one wou
expect the outer electronic shell of atoms to be deformed
the interaction with nearest neighbors. In general, constitu
atoms or complexes will possess a dipole moment. Henc
is of interest to consider the situation when one of the m
ecules is in its ground state in the virtual state of a tw
molecule system. Up to now this case was ignored, althou
as we shall see, it may play a significant, if not domina
role.

From Eq.~38! we obtain the following expression for th
additional contribution, denotedk IJ

(1) , to k IJ from virtual
states in which only one molecule is excited. We still invo
the approximation of localized excited states@24#. But then
terms in which only moleculeJ is excited require evaluation
of Ei j ; i 8 j 8n with j 5 j 8, but i andi 8 are arbitrary and similarly
when only moleculeI is excited. For a molecule in the ex
cited state we use the same approximation as before, a
expanding the denominator with respect toDr to get a non-
zero matrix element. For the molecule which remains in
ground state in the virtual state, one has to include both s
of charge at each site. Thus~see Appendix F! we find that

k̃ IJ
~1!56 (

i ,i 8PI ; j PJ

e2qiqi 8~ x̄i8ȳi 8
8 2 x̄i 8

8 ȳi8!
~D̄i 8 j•aJ!

D̄ i j
3 D̄ i 8 j

5

3(
m

Em~ j !21~^m j uDzj8u0&22 1
2 ^m j uDxj8u0&2

2 1
2 ^m j uDyj8u0&2!. ~59!

In Eq. ~59! we sumi andi 8 over all the charges in a give
atom, in which caseqi x̄i8 is replaced bypxi8 , wherepi is now
the expectation value of the dipole moment of thei th atom,
in its ground state, so thati and i 8 from now on refer to
le
ed
-

re
d

l-

n
n-
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-

y
nt
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l-
-
h,
t
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atoms, whereasj will still label electronic charges. Then th
preceding equation can be reduced to

k̃ IJ
~1!56(

i i 8 j
@pix8 pi 8y

8 2pi 8x
8 piy8 #

~D̄i 8 j•aJ!

D̄ i j
3 D̄ i 8 j

5

3e2(
m

Em~ j !21@^m j uDzj8u0&22 1
2 ^m j uDxj8u0&2

2 1
2 ^m j uDyj8u0&2# ~60a!

[W1W2 , ~60b!

whereW1 is the factor on the first line of Eq.~60a! andW2
that on the second and third lines of this equation. In writi
this result we assumed that for typical atomsi one has
pixz̄i 8@pizx̄i 8 . Once again, in this expression one has
carry out averaging with respect to independent up and do
orientations of both molecules. But this average turns ou
be superfluous for the model of a helical molecule which w
introduced above.

As in Eq. ~45!, we introduce components of the atom
dipole moment with respect to the principal axes of the ato
in which case we have

px85px9 cos~qs!2cpy9 sin~qs!2caqpz9 sin~qs!,

py85px9 sin~qs!1cpy9 cos~qs!1caqpz9 cos~qs!, ~61!

pz852caqpy91cpz9 .

The componentpx9 is essentially the radial component of th
atomic dipole moment and is nonzero for helical geome
For instance, for the molecule TMV, shown in Fig. 6@35#,
this radial component may be appreciable. In such a case
write

` i i 8
2 [pix8 pi 8y

8 2pi 8x
8 piy8

5@px9
21c2~py91aqpz9!2#sin@q~si 82si !# ~62a!

[`0
2 sin@q~si 82si !#. ~62b!

FIG. 6. TMV, adapted from Ref.@35#. We indicate a possible
axis along which the dipole moment of each complex might
oriented. In the situation shown here, the largest component of
dipole moment of the complex is radial.
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We now substitute this form into Eq.~60a! and assume per
fect alignment as in Eq.~49!. Then the summand is symme
trized and we writeW15`0

2X1L/R8, with

X1~ q̃,L̃ !53(
i i 8 j

F 12L̃2@ s̃j
21 s̃i s̃i 82 s̃j~ s̃i1 s̃i 8!#

@11L̃2~ s̃j2 s̃i !
2#5/2@11L̃2~ s̃j2 s̃i 8!

2#5/2G
3~ s̃i 82 s̃i !sin@ q̃~ s̃i 82 s̃i !#, ~63!

where s̃5s/L,q̃5qL, and L̃5L/R. To evaluateW2 we
again invoke the model of Eq.~53!, in which case, for smal
anisotropy, Eqs.~26! and ~44! enable us to write

W2[e2(
m

Em
21@^m j uDzj8u0&22 1

2 ^m j uDxj8u&
22 1

2 ^m j uDyj8u&
2#

5e2F2
^xuDx9u0&2

2Ex
1

^yuDy9u0&2

2Ey

2~aq!221

11~aq!2

1
^zuDz9u0&2

2Ez

22~aq!2

11~aq!2G
5

e2aa
2

E
C~aq!, ~64!

whereC(aq) is defined in Eq.~55!. Using the asymptotic
evaluations in Appendix G, we thus have the results

k̃ IJ
~1!55

e4aa
2d2L4r3

ER8 C~aq!f~ 1
2 qL!, a!L!R

8e4aa
2d2r3qL

ER4 C~aq!I 1
2~qR!, L@R

~65a!

~65b!

FIG. 7. Y1(qL,L/R)5C(aq)X1(qL,L/R), with C(aq) and

X1(q̃,L̃) defined in Eqs.~55! and ~63!, respectively, versusqL for
L5200 Å , R520 Å , r53 Å 21, d51/5, andh50. According
to Eq. ~68! the quantity plotted gives the dependence of the tor
field h(1) on the chiral wave vector of a moleculeq. Note that the
molecule is achiral if eitherq→0 or q→`.
where d is the effective size of the dipole moment:̀0
5ed,

f~x!52~3/2!~d/dx!@~sinx!/x#2, ~66!

and

I n~qR!5E
0

`

e2~1/2![x21~qR/x!2]xndx. ~67!

Now we evaluateh following the procedure of Eq.~51! in
terms of the chiral energy per moleculeE (1) due to one-
molecule effects:

h~1!52
E ~1!

VQ
5

gR2

4V
W1W25S ge4aa

2d2L

4ER6V DC~aq!X1~ q̃,L̃ !.

~68!

Using the evaluations of Appendix G, we obtain th
asymptotic results,

h~1!55
ge4aa

2d2L4r3

4ER9 C~aq!f~ 1
2 qL!, a!L!R

2ge4aa
2d2r3q

ER4 C~aq!I 1
2~qR!, L@R.

~69a!

~69b!

Here again we see from the appearance ofC(aq) that chiral-
ity requires a nonzero anisotropy of the polarizability ch
acterized byd andh. Since the factorC(aq) also appears in
Eq. ~58!, we see that the critical value~if any! where h
changes sign asq is varied is only determined by the geom
etry, at least within our simple model. For concentrated s
tems, the limitL@R is the most relevant and for this cas
Fig. 7 shows howh(1) depends on the molecular chiralityq,

e

FIG. 8. The factorY1[C(aq)X1(qL,L/R) as a function ofL
for two values of the molecule wave numberq50.0444 Å21 ~plot
1! andq50.1333 Å21 ~plot 2! with R520 Å , a57.5 Å, d50.2,
andh50. According to Eq.~68! whenL@R ~so thatV5LR2) the
quantity plotted gives the dependence of the torque fieldh(1) on the
lengthL of a molecule.
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when the length of the molecules and the density of atomr
are fixed. Note that the variation ofh(1) with the molecular
chirality q strongly depends on details of molecular geo
etry since only a fixed number of atoms is allowed on
helical thread. Figure 7 shows that foraq of order unity or
less, whereh(1) is appreciable and may give a short pitc
h(1) is positive, whereas for steric interactionsh is believed
to be negative for smallq @7,34#. Since increasing the densit
probably causes steric interactions to dominate, it is poss
n
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that the combination of these two mechanisms could cauh
to change sign as a function of density or temperature@36#.
In Fig. 8 we show the behavior of the quantityY1

[C(aq)X1(q̃,L̃) as a function of L for R520 Å, r
53 Å21, d51/5, andh50 for two fixed values of the mo-
lecular chiral wave vector,q. In particular, it is noteworthy
that for largeL, Y1 ~and thereforeh(1)) is independent ofL.
To get some idea of the relative importance ofh(1) andh(2),
consider their ratio:
r[
h~1!

h~2!
55 2S 2L2d2r

3aa
2a D S 11a2q2

aq D ~d2h!21f~ 1
2 qL!, L!R

2S 1024R3d2r

45paa
2a2 D ~11a2q2!~d2h!21I 1

2~qR!, L@R.

~70a!

~70b!
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One sees that even withd/aa as small as 0.03, this ratio ca
easily be of order unity.

To numerically estimate the pitch arising from the cons
ered interaction we will take parameters of a system
constituent molecules chosen in the preceding section. T
if aq51/3 one findsh(1)50.5(d/a0)2 dyn/cm. If molecules
possess a local dipole moment, the resulting dipolar inte
tions may lead to strong biaxial correlations between nei
boring molecules. Using the evaluation of the dipolar int
action energy in terms of the integral analyzed in Appen
G, we estimate the order of magnitude of the dipole-dip
interaction to beVdd'(d/a0)2105 K. So if we suppose tha
the biaxial correlations due to dipole-dipole interacti
among molecules is negligible when it is less than 100
then one must have (d/a0)2,1023. At the upper limit of
validity of our calculations (d/a0)251023 and the macro-
scopic pitch due toh(1) will be P(1)52pK2 /h(1)512.5mm.
As the density of local dipoles is increased, the macrosco
pitch becomes smaller. For instance, if we setd/a051/3, we
get a pitch of order 0.1mm, although this estimate will be
significantly modified by biaxial correlations, which hav
been neglected in our treatment. Sinceh(1);r3 and the
dipole-dipole interaction is proportional tor2, it is conceiv-
able that for much larger moleculesh(1) could be significant
without the dipoles being large enough to induce long-ra
biaxial order. Finally, whenaq is larger than unity~as for
TMV !, this mechanism leads to a very large pitch for alm
any choice of parameters. As mentioned in Sec. IV B, it
possible that larger values of the pitch would be obtaine
the role of the transverse were treated exactly rather tha
an expansion.

VI. CONCLUSION

Here we put our work into the context of current resea
and record our conclusions.

~1! We introduced a simple model of localized polar e
cited states that enabled us to make an explicit calculatio
the chiral interaction,k IJaI3aJ•RIJ , between moleculesI
andJ due to quantum charge fluctuations analogous to th
-
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responsible for theR26 dispersion interaction between ne
tral atoms. We identified two distinct physical effects d
pending on whether one or both molecules were excited
the virtual state of the two-molecule system. In impleme
ing this calculation we used a modified multipole expans
in which only coordinates transverse to the long axis of
molecule were expansion parameters, so that we could
long molecules which usually are the building blocks of li
uid crystals. The contributionk IJ

(2) to k IJ from virtual states
with both molecules excited has a form similar to that fou
by Van der Meeret al. @13# and Kats@14#. For a helical
molecule of lengthL we find thatk IJ

(2)}L2/R8 for L!R and
k IJ

(2)}L/R7, for L>RIJ . The contributionk IJ
(1) to k IJ from

virtual states with only one molecule excited is usually on
dominant when the local atomic dipole moments are la
enough to give rise to significant~possibly long-range! biax-
ial correlations. Both mechanisms give rise to a chiral int
action between a chiral molecule and an achiral one that
a local anisotropic polarizability. Our formulation leads
numerical estimates of the pitch which are larger than t
found in many cholesterics. Whether this discrepancy is
artifact of the expansion in transverse coordinates along w
a disregard of biaxial correlations between molecules or is
indication that steric rather than quantum interactions are
microscopic origin of macroscopic chirality is not clear
present. The role of biaxial correlations between molecule
considered elsewhere@25#.

~2! We evaluatedk IJ and the torque fieldh for helical
molecules as a function of the wave vectorq which describes
the chiral structure of an individual molecule. We found th
the sign ofh depends on the details of the anisotropy of t
local atomic polarizability. For instance, for (aq)2!1, the
sign ofh(1) ~the contribution toh from virtual states in which
only one molecule is excited! has the same sign asd, the
local anisotropy of the polarizability. One expectsd to be
positive because presumably the polarizability along the t
gent of the helix is larger than that along perpendicular
rections. This sign ofh(1) is opposite to that expected from
steric interactions@34#. As for steric interactions, one expec
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h(1) to change sign asq is increased, but our calculation
indicate that this only happens whenh(1) is so small that it is
hardly likely to be the dominant mechanism for macrosco
chirality. Whend is positive and large, the sign of the two
molecule contributions toh is negative for smallaq and
positive for largeaq, just as expected for steric interaction
However, our calculations indicate that normallyh(2) is not
significant.

~3! Here we calculated the effective chiral interactions
averaging the orientation of the molecule over configurati
with the long axis fixed. Even within mean-field theor
wherein each molecule is described by a single-molecule
entational distribution function of the three Euler angles,
only required symmetry in the locally nematic state is tha
be invariant against rotations about the nematic axis. As
cussed in Appendix B, this requirement still permits biax
contributions to the orientational probability distributio
which we neglected.

~4! These calculations suggest some general observat
First of all, the interaction from virtual states with two mo
ecules excited gives rise to a two-point chiral interaction
the form of an integral over the long axis of each molecu
This result gives a formal justification for introduction of
chiral interaction between ‘‘chiral centers’’ on one molecu
with a center of local anisotropic polarizability on anoth
molecule. However, this same characterization doesnot ap-
ply to the mechanism involving local permanent atomic
pole moments. The dipolar mechanism leads to an intri
cally three-point chiral interaction of a type which, as far
we know, has not yet been proposed. It would be interes
to observe such an interaction for helical molecules wh
have a local radial dipole moment.

~5! Our calculations can potentially be generalized in s
eral directions. For instance, there seems to be no reason
our results cannot be taken over immediately to discuss
interaction between flexible polymers. There the aver
over spinning~within a tube surrounding the convolute
polymer shape! can still be taken. Then in Eq.~16! one
would replaceaI by its local value at atomi. Our calculations
can also be applied to liquid crystal systems containin
mixture of chiral and achiral molecules. There one has t
types of interactions to consider. The first of these is
interaction between adjacent chiral and achiral molecule
which the results of this paper apply directly. The second
the interaction between more widely separated pairs of ch
molecules. For this interaction, our result fork IJ ought to be
multiplied by e22, wheree is the static dielectric constant
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APPENDIX A: QUANTUM AND CLASSICAL AVERAGING

The energy of interaction of moleculesI and J averaged
over their rotational motion when expressed in terms o
multipole expansion is of the form
c
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@UIJ#av5 (
M $a%,N,$b%

La1 ,a2 , . . . ,an ;b1 ,b2 , . . . ,bm
~ I ,J!

3@Ma1 ,a2 , . . . ,an
~r I !#av@Nb1 ,b2 , . . . ,bm

~rJ!#av,

~A1!

where@ #av indicates an average over orientations andM and
N are tensors of arbitrary rank which are functionals o
density on the molecule in question. For classical two-bo
interactions these tensors are multipole moments of the f

Ma1 ,a2 , . . . ,an
~r I !5E drr I~r !r a1

r a2
. . . ,r an

. ~A2!

For classical two-body interactions these tensors are thus
ear functions of the density, so that the orientational aver
of the tensor is the same as the tensor evaluated for
orientationally averaged density:

@Ma1 ,a2 , . . . ,an
~r!#av5Ma1 ,a2 , . . . ,an

~@r#av!. ~A3!

This means that classically the interaction averaged over
orientational motion of moleculeI, say, is the same as th
interaction would be for a molecule having the average~over
orientations! shape. Thus, classically, spinning a chiral mo
ecule leads to two-body interactions characteristic of
uniaxial, i.e., achiral molecule. Quantum mechanically,
situation is different, because in second-order perturba
theory the tensorM , say, in Eq.~A1! is a bilinear function of
the densityr(I ) of the form

Ma1 ,a2 , . . . ,an
5E r~r !drE dr 8r~r 8!T~r ,r 8!

3r a1
•••r ak

r ak11
8 •••r an

8 , ~A4!

whereT(r ,r 8) depends on the spatial correlations of the i
portant excited states, and Eq.~A3! is incorrect. In other
words, the nonlinear fluctuation of the electric field of a mo
ecule due to quantum fluctuations has a chiral compon
that survives an average over rotations and thereby dis
guishes between right-handed and left-handed molecule

APPENDIX B:
BIAXIAL ORIENTATIONAL CORRELATIONS

If the Euler angles are taken to represent the orientatio
the molecule with reference to axes fixed in space such
the z axis coincides with the axis of nematic order, then t
probability distribution for the orientation of a single mo
ecule must be independent ofa. If the distribution is also
independent ofg, then it means that for each value ofb, the
molecule spins with equal probability through all angl
about its long axis. However, if we have correlations b
tweenb andg, we can have a distribution like that descri
ing the orientation of the moon in whichg2b assumes a
fixed value. For a molecule, this distribution is depicted
Fig. 9.
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APPENDIX C: ORIENTATIONAL AVERAGES

In this appendix we evaluate the orientational avera
~indicated by brackets,@ #av) of the terms in Eq.~35!. In this
calculation, we should keep in mind that we only need ke
terms which include one antisymmetric tensor. Also on
averages of even numbers of powers of components ofri are
nonzero. Finally, terms obtained by interchanging the indi
i and j ~labeling atoms on different molecules! can be in-
cluded implicitly. With these understandings we use Eq.~13!
to write

T1[@~ri j •DD23!n0~ri j •DD23!0n#av

52@~r iaDaD23!n0~r ibDbD23!0n#av

5eabgaIgemnz~r im8 DaD23!n0~r in8 DbD23!0n

5@R3aI•aJ#@~r im8 zjD
23!n0~r in8 D23!0n

2~r im8 D23!n0~r in8 zjD
23!0n#emnz

52@R3aI•aJ#~r im8 zj8D
23!n0~r in8 D23!0nemnz . ~C1!

In terms involving four powers of transverse componen
contributions at the order inRIJ

21 which we need require tha
two components refer to atomi and two to atomj. Thus

T2[2 3
2 †~@ri j •D#2D25!n0~r i j

2 D23!0n‡av

523†~@ri•D#2D25!n0~r j
2D23!0n‡av

26†~@ri•D#@rj•D# !n0~@ri•rj #D
23!0n‡av. ~C2!

The first term gives rise to no antisymmetric terms and
be dropped. The second term leads to

T2[23@~r im8 Dar j bDbD25!n0~r im8 r j aD23!0n#av

13@~r im8 DaaIar j bDbD25!n0~r im8 aIgr j gD23!0n

23emnzeabraIr^~r im8 Dar j bDbD25!n0~r in8 r j gD23!0n#av.

~C3!

The first term gives zero antisymmetric contribution. T
second and third terms give identical contributions. So

T253@R3aI•aJ#~r im8 r j n8 @D•aI #D
25!n0~r im8 r j t8 D23!0nentz .

~C4!

FIG. 9. Distribution for whichg2b is fixed.
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Likewise, keeping only relevant terms, we write

T3[ 9
4 †~@ri j •D#2D25!n0~@ri j •D#2D25!0n‡av

5†

9
2 ~@ri•D#2D25!n0~@rj•D#2D25!0n19~@ri•D#

3@rj•D#D25!n0~@ri•D#@rj•D#D25!0n‡av. ~C5!

The first term leads to zero antisymmetric contribution.
the second term there are two equal contributions, one f
taking the antisymmetric term in the average overri , the
other from the antisymmetric term in the average overrj . So
we write

T359emnz@~r im8 r j bDaDbD25!n0

3~r in8 r j dDgDdD25!0neagraIr#av

5 9
2 emnz~r im8 r j t8 DaDbD25!n0~r in8 r j t8 DgDdD25!0n

3eagraIr~dbd2aJbaJd!. ~C6!

Then, using the symmetry between the two matrix eleme
we have

T359@R3aI•aJ#~r im8 r j n8 DaD25!n0

3~r im8 r j t8 DgDdzi8D
25!0nentz~dag2aIaaIg!.

~C7!

We setzi85 z̄i81Dzi8 . The term inz̄i8 vanishes. Thus

T359R3aI•aJr̄ im8 ~r im8 r j n8 DaD25!n0

3~r j t8 DgDd~Dzi8!D25!0nentz~dag2aIaaIg!.

~C8!

The matrix elements are symmetric functions ofm andt. So
the antisymmetry of thee tensor causes this term to vanis
At higher order inRIJ

21 there would be nonzero contribution
from this term. But at the order we consider there are no

The remaining terms in Eq.~35! vanish for reasons simi
lar to those which madeT3 vanish. So the only contribution
that survive are those written in Eq.~38!.

APPENDIX D: NONLOCAL EFFECTS

In this appendix we discuss nonlocal corrections co
tained in Eq.~38! from terms whereiÞ i 8 and/or j Þ j 8.
Rather than give a general argument, we will illustrate
nature of the argument by considering specifically the n
local corrections to the first term in Eq.~38!. For this purpose
we assume that the ‘‘unperturbed’’ energiesEninj

can be
obtained from a Hamiltonian of the form

H5H01Vhop[H01 (
i , j ;a,b

u ia&t i j
ab^ j bu, ~D1!

whereH0 is completely local:

H05(
ia

u ia&Ei
a^ iau. ~D2!
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We assume the states to be strongly localized so thatut i j
abu

!Ei
a for all indices.

Now we consider the contributionT0 to k IJ5 1
2 @ k̃ IJ

1k̃JI# from the first line of Eq.~38!. Thus we write

T052e4F K 0Ur iaDi j
23 1

E r i 8bzj 8Di 8 j 8
23 U0L

2 K 0Ur iazjDi j
23 1

E r i 8bDi 8 j 8
23 U0L Geabz . ~D3!

In this appendix all coordinates are taken relative to a
fixed in the molecule. Thus,r i

m here denotes what we calle
(r 8) i

m in the notation of Eq.~11!. For simplicity we consider
here only the contribution from virtual states in which bo
molecules are excited. In that case, the sums are only
electrons.

Now we expand the matrix elements according to E
~36!, as was done in Eq.~41!. Thereby we get the corre
sponding contributiondk IJ as

dk IJ5 K 0UDr i jDr j h

1

EDr i 8sDr j tU0L @~“ i j“ j h r̄ imD̄ i j
23!

3~“ i 8s“ j 8tz̄j 8r̄ i 8nD̄ i 8 j 8
23

!2~“ i j“ j h r̄ imz̄j D̄ i j
23!

3~“ i 8s“ j 8t r̄ i 8nD̄ i 8 j 8
23

!#emnz

5 K 0UDr i jDr j h

1

EDr i 8sDr j tU0L @~djm“ j hD̄ i j
23

1 r̄ im“ i j“ j hD̄ i j
23!~dsndtzD̄ i 8 j 8

23
1dsnz̄j“ j 8tD̄ i 8 j 8

23

1dtzr̄ i 8n“ j 8tD̄ i 8 j 8
23

!2~djmdhzD̄ i j
231djmz̄j“ j hD̄ i j

23

1dhzz̄j“ i jD̄ i j
23!~dsn“ j 8tD̄ i 8 j 8

23

1 r̄ i 8n“ i 8s“ j 8tD̄ i 8 j 8
23

!#emnz . ~D4!

Here we dropped terms of order 1/RIJ
9 . In evaluating the

gradients, note thatDi j depends onr i(r j ) only via zi(zj ).
Thus“ i j“ j hD̄ i j

23 is only nonzero forj5h5z.
The terms of greatest interest are those of order 1/RIJ

7 ,
because such terms are of potentially lower order than
local terms we kept of order 1/RIJ

8 . These leading-orde
terms are

dk IJ5 K 0UDr imDr jz

1

EDr i 8nDr jzU0L ~D̄ i 8 j 8
23

“ jzD̄ i j
23

2D̄ i j
23

“ j 8zD̄ i 8 j 8
23

!emnz[ K 0UDr imDr jz

1

EDr i 8nDr jzU0L
3@ f ~zi ,zj ,zi 8 ,zj 8!2 f ~zi 8 ,zj 8 ,zi ,zj !#, ~D5!

wheref ;1/RIJ
7 . Note that when the states are localized, i.

when i 5 i 8 and j 5 j 8, the factor in large square bracke
vanishes. Now consider expandingE as in Eq.~D1!, so that
s

er

.

e

.,

1

E5
1

E02H0
1

1

E02H0
Vhop

1

E02H0

1
1

E02H0
Vhop

1

E02H0
Vhop

1

E02H0
1•••, ~D6!

whereE02H0;E, whereE, the typical excitation energy, is
much larger thant, a typical hopping matrix element. Thi
equation implies that when it requiresm hops for an electron
to move from sitei to site i 8 and n hops for an electron to
move from sitej to site j 8, then the matrix element will be o
relative order (t/E)(m1n). Thus

D f [ f ~zi ,zj ,zi 8 ,zj 8!2 f ~zi 8 ,zj 8 ,zi ,zj !

;~ t/E!“ f ;~ t/E!~zi2zi 11!/RIJ
8 . ~D7!

We see that the ratio of this nonlocal contribution to the lo
contribution of Eq.~38! is of orderD f /(r' /RIJ

8 ), wherer' is

a typical value ofx̄i or ȳi . This ratio is thus of order (t/E)
3(zi 112zi)/r' . Normally (zi 112zi)/r' is of order unity,
so indeed the nonlocal contributions are of relative ordert/E
and can reasonably be neglected.

APPENDIX E: POSITIONAL CORRELATIONS

In this appendix we consider how energy of interacti
for the system of molecules is effected by the relative dis
bution of molecules. A simple way to address this issue is
evaluate the chiral interaction as a function ofZIJ[Z, thez
component ofRIJ . We assume that it suffices to do this fo
helical molecules, in which case the calculations can be d
explicitly. Previously we had setZ50 and had considered
the contribution to the torque field from a shell of six neig
bors taken to lie in the equatorial plane. Here we show
merically that this approximation is quite reasonable. W
study the dependence ofSIJ[( i j Si j on ZIJ . We still assume
perfect nematic order, so thataI5aJ5ez . Then the sum in
Eq. ~50! becomes

SIJ~Z!5(
i j

@R21~Z1zi2zj !
2#25@R22~Z1zi2zj !

2#,

~E1!

and we see that

k IJ
~2!~Z!

k IJ
~2!~0!

5
SIJ~Z!

SIJ~0!
. ~E2!

For the one-molecule terms we similarly note that theZ
dependence in Eq.~59! is reproduced by writing

k̃ IJ
~1!~Z!}(

i i 8 j

qiqi 8~ x̄i8ȳi 8
8 2 x̄i 8

8 ȳi8!
~D̄i 8 j•aJ!

D̄ i j
3 D̄ i 8 j

5

5(
i i 8 j

`0
2~Z1 z̄i 8

8 2 z̄j8!sin@q~ z̄i 8
8 2 z̄i8!#

@R21~Z1 z̄i82 z̄j8!2#3/2@R21~Z1 z̄i 8
8 2 z̄j8!2#5/2

,

~E3!

in the notation of Eqs.~59! and ~60!.
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These results allow us to compute the ratiok IJ
(n)(Z)/

k IJ
(n)(0) which is shown in Fig. 10 forn51 andn52. This

result is representative of the situation for a wide range
parameters. As one might expect, the contribution to
torque field decreases strongly asuZu/L increases towards
unity. Accordingly, the approximation of including only th
effect of equatorial neighbors is a good one.

APPENDIX F: CONTRIBUTIONS TO H „1…

In this appendix we discuss the evaluation of the o
molecule contributions tok̃ IJ . We consider the terms in th
last two lines of Eq.~38!. We will analyze the one-molecul
contributions which arise wheni 5 i 8 but j and j 8 are in
general different. In the intermediate excited state only at
i is in an excited state. Atomsj and j 8 remain in their ground
states. Calling this termT we write

T523 (
i , j , j 8

e2qjqj 8K 0Uxi8yj 8
8 Di j 8

23 1

E xi8xj8Di j •aIDi j
25U0L

1•••, ~F1!

where the dots denote the three additional terms require
make the expression be rotationally invariant.~These can be
reconstructed at the end of the calculation.! Using the expan-
sion of Eq.~36! we have

T523e2(
i j j 8

qjqj 8K 0U@Dxi8D̄ i j 8
23

1 x̄i8Dzi8~“ izDi j 8
23

!# ȳ j 8
8

1

E $Dxi8Di j •aIDi j
25

1 x̄i8Dzi8“ iz@~Di j •aI !Di j
25#%x̄ j8U0L 1•••

FIG. 10. The ratiok IJ
(n)(Z)/k IJ

(n)(0), whereZ is thez component
of RIJ for molecules of lengthL5200 Å and intermolecular sepa
ration R520 Å . For n51 we show essentially indistinguishab
curves for q50.0444 (Å )21 and for q50.1333 (Å )21. For n
52 this ratio does not depend onq.
f
e

-

m

to

'23e2(
i j j 8

qjqj 8K 0UDxi8
1

EDxi8U0L x̄ j8ȳ j 8
8 D̄ i j 8

23

3~D̄i j •aI !D̄ i j
251•••. ~F2!

Now we carry the sum overj ( j 8) over the charges tha
comprise the dipole momentpj (pj 8) on atomj ( j 8) to get

T523e2(
i j j 8

K 0UDxi8
1

EDxi8U0L @py j8
8 D̄ i j 8

23

1pz j8
8 ȳ j 8

8 ~“ j 8zDi j 8
23

!#$px j8 ~D̄i j •aI !D̄ i j
25

1pz j8 x̄ j 8
8 “ jz@~D̄i j •aI !Di j

25#%1•••

'23e2(
i j j 8

K 0UDxi8
1

EDxi8U0L py j8
8 px j8 D̄ i j 8

23

3~D̄i j •aI !Di j
251•••, ~F3!

where nowj and j 8 refer to atoms. Restoring the addition
terms to preserve rotational invariance we obtain

T523e2(
i j j 8

F K 0UDxi8
1

EDxi8U0L 1 K 0UDyi8
1

EDyi8U0L G
3@py j8

8 px j8 2px j8
8 py j8 #D̄ i j 8

23
~D̄i j •aI !Di j

25 . ~F4!

When the indices are relabeled, this result reproduces pa
Eq. ~59!.

APPENDIX G: EVALUATION OF INTEGRALS IN SEC. V

In this appendix we evaluate the integralX1 in Eq. ~63!
and an integral needed to evaluate the dipolar interac
energy between two long helices.

Consider the asymptotic evaluation of Eq.~63!, first, in
the limit L@R. End effects can be shown to be negligible,
which case the final summation~over s̃j ) introduces a factor
of N and one setssj50. Also we consider only the con
tinuum limit in which the sums are replaced by integra
One can show that correct to leading order inL̃21, the limits
on the integrals can be extended to6`. Thus we have the
asymptotic result

X1~ q̃,L̃ !;3N3E
2`

`

dsE
2`

`

ds8F 12L̃2ss8

~11L̃2s2!5/2~11L̃2s82!5/2G
3~s82s!sin@qL~s82s!#. ~G1!

For each of the two factors in the denominator we introdu
the representation

p25/25
1

~3A2p!
E

2`

`

x4e2~1/2!px2
dx. ~G2!

Then the integrations overs ands8 can be done analytically
and eventually one finds that

X1~ q̃,L̃→`!58~rR!3~qR!I 1
2~qR!, ~G3!
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whereI 1 is defined in Eq.~67! of the text.
The limit L̃→0 is trivial. We find that

X1~ q̃,L̃→0!5N3f~ 1
2 qL!, ~G4!

wheref(x)52(3/2)(d/dx)@(sinx)/x#2.
Finally we evaluate the dipolar interaction energyEdd be-

tween two long helical molecules,a and b, separated by a
distanceR along thex axis. We assume that the radius of t
helix is much less thanR. In this limit, in terms of the atomic
dipole moments we write

Edd5r2E
2L/2

L/2

dzaE
2L/2

L/2

dzb@R21zab
2 #23/2H @px9 cos~qza

1fa!2cp̃y9 sin~qza1fa!#@px9 cos~qzb1fb!

2cp̃y9 sin~qzb1fb!#F12
3R2

R21zab
2 G1@px9 sin~qza

1fa!1cp̃y9 cos~qza1fa!#@px9 sin~qzb1fb!
ls

se

ne

in

J

h.
1cp̃y9 cos~qzb1fb!#J , ~G5!

where p̃y95py91aqpz9 ,fa(fb) is the angle of rotation of
moleculea ~b! about its long axis, andzab5za2zb . Here we
did not include terms involvingpz8 which either are indepen
dent of both anglesfa and fb or vanish in the limitL
→`. In that limit we only need to keep terms which depe
on zab , in which case we have

Edd5 1
2 r2`0

2LE
2`

`

cos~qzab1fab!F 2zab
2 2R2

~R21zab
2 !5/2Gdzab ,

~G6!

where fab5fa2fb . Using Eq. ~G2! we obtain the final
result

Edd52Lr2`0
2q2I 21 cosfab[2 1

2 Vdd cosfab . ~G7!
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